




https://earthquake.usgs.gov/
https://earthquake.usgs.gov/
https://earthquake.usgs.gov/
https://earthquake.usgs.gov/
https://earthquake.usgs.gov/
https://earthquake.usgs.gov/
https://earthquake.usgs.gov/
https://earthquake.usgs.gov/
https://visibleearth.nasa.gov/collection/1484/blue-marble
https://visibleearth.nasa.gov/collection/1484/blue-marble
https://visibleearth.nasa.gov/collection/1484/blue-marble
https://visibleearth.nasa.gov/collection/1484/blue-marble
https://visibleearth.nasa.gov/collection/1484/blue-marble
https://visibleearth.nasa.gov/collection/1484/blue-marble
https://visibleearth.nasa.gov/collection/1484/blue-marble










https://csci-4611-fall-2022.github.io/Builds/Assignment-3
https://csci-4611-fall-2022.github.io/Builds/Assignment-3
https://csci-4611-fall-2022.github.io/Builds/Assignment-3
https://csci-4611-fall-2022.github.io/Builds/Assignment-3
https://csci-4611-fall-2022.github.io/Builds/Assignment-3
https://csci-4611-fall-2022.github.io/Builds/Assignment-3
https://csci-4611-fall-2022.github.io/Builds/Assignment-3








Triangle Primitive Types

GL_TRIANGLES: Vertices 0, 1, and 2 form a triangle. Vertices 3, 4, and 5 form a triangle. And so on.

GL_TRIANGLE_STRIP: Every group of 3 adjacent vertices forms a triangle. The face direction of the strip is determined by the winding of 
the first triangle. Each successive triangle will have its effective face order reversed, so the system compensates for that by testing it in the 
opposite way. A vertex stream of n length will generate n-2 triangles. 

GL_TRIANGLE_FAN:  The first vertex is always held fixed. From there on, every group of 2 adjacent vertices form a triangle with the first. So 
with a vertex stream, you get a list of triangles like so: (0, 1, 2) (0, 2, 3), (0, 3, 4), etc. A vertex stream of n length will generate n-2 triangles.

Vertex Stream

        (x1, y1, z1)
        (x2, y2, z2) 
        (x3, y3, z3) 





Vertex Buffer

Lists x,y,z position of 
each vertex once.

Index Buffer

Each consecutive set of 3 indices defines a triangle.

The indices are like pointers into the vertex buffer.



When we index a set of triangle vertices, we list them in a certain winding order.

The "front face" of each triangle is the one where the vertices wind in counterclockwise order.

Use the right hand rule – your thumb should point "up" out of the front face of each triangle.







https://learnopengl.com/Advanced-Lighting/Normal-Mapping



https://learnopengl.com/Advanced-Lighting/Normal-Mapping





To define a normal for each vertex, 
we need to add a normal buffer.

This is the same size as the vertex buffer 
and uses the same index buffer!



For the unit cylinder (radius of 1), 
the normal values are easy to 
calculate.  They are the same 

x,y,z values as the vertices!

Hint: you should come back to 
this slide when you are trying to 
calculate the globe normals.  :)



Triangles A and B both contain vertices 2 and 4, 
so we can save some space by just including 

these in the vertex table once, right?

No!  The surface at these vertices is not continuous.  
There is a sharp edge, so the normal is actually 

different depending which triangle we are rendering!



Solution: Just make new vertices. They will have 
the same x,y,z position but different normals.

(You won't need to do this on Assignment 3.)



For a sphere or cylinder and other shapes where 
you know the equation for the geometry, you can 
usually also write an equation for the normals.

Sometimes, you are given a model with vertices 
but no normals (e.g., 3D scanning).

Given the position of the vertices, can you find the 
normal of a triangle?



For a sphere or cylinder and other shapes where 
you know the equation for the geometry, you can 
usually also write an equation for the normals.

Sometimes, you are given a model with vertices 
but no normals (e.g., 3D scanning).

Given the position of the vertices, can you find the 
normal of a triangle? How do you calculate n?



For a sphere or cylinder and other shapes where 
you know the equation for the geometry, you can 
usually also write an equation for the normals.

Sometimes, you are given a model with vertices 
but no normals (e.g., 3D scanning).

Given the position of the vertices, can you find the 
normal of a triangle? How do you calculate n?

n = normalize (a x b)



We just calculated the normal for the whole 
triangle, which is OK for "flat" surfaces.

What if you want a per-vertex normal, like we use 
for smooth surfaces?



We just calculated the normal for the whole 
triangle, which is OK for "flat" surfaces.

What if you want a per-vertex normal, like we use 
for smooth surfaces?

First, find the normal for the neighboring triangles.



We just calculated the normal for the whole 
triangle, which is OK for "flat" surfaces.

What if you want a per-vertex normal, like we use 
for smooth surfaces?

First, find the normal for the neighboring triangles.

Then, average them to get the normal at the vertex.  
(O�en a weighted average is used based on the 
area of each triangle.)


