


Lighting models the light/surface interactions to
determine the final color and brightness for
a specific point on a surface. 

Shading applies the lighting model to the entire surface, "filling in" each
triangle.

Lighting Shading





As
part of some illumination
models, you can
specify whether the light 
intensity varies with the distance between the object
and the light source.



Local illumination only
considers the
light, the camera position,
and the object 
material properties.  This is commonly used in games because it's fast!

However, it
leaves out things realistic effects like shadows, reflections, etc.



On
the other hand, we have global illumination, which takes into
account the 
interaction of light from all the
surfaces in the scene.

Ray
tracing is the most famous example of global
illumination, and a really fun

algorithm to write – you will do this in CSCI 5607.  It models light bouncing around.



Radiosity is another example that models energy moving from emitters (lights) 
into the scene.

This illumination model is view independent.





Ambient
light is background illumination.

Diffuse surfaces reflect light.  Some light goes to eye, some goes
to scene.

Light
bounces off of
other objects and eventually reaches this surface element.  This
is expensive to keep track of

accurately, so we use a bit of a hack instead.

Ambient component

constant

independent
of object position and viewer position

exists
in most environments

some light hits surface from all directions (a crude approximation of indirect lighting/global illumination)

images
without some form of ambient lighting look stark, they have too much contrast



Diffuse
light is the illumination that a surface receives from a light source
that
reflects equally in all directions.

The camera’s position or "eye point" does not matter.



Lambert's Law tells us the amount of light received at
a given point p on the surface
is proportional to the angle between the
direction to the light and the surface normal.



Lambert's
Law:  The radiant energy D that a small
surface patch receives from a light sources is:

Diffuse   =   Kd  x  I  x  cos(theta)

Kd =
diffuse reflection coefficient

I =
light intensity

theta = angle between the light vector and the surface normal



Diffuse   =   Kd  x  I 
x  cos(theta)

for I = 1.0



Specular light is directed
reflection from shiny surfaces.

Dependent on light source position and
viewer position.

Typical of bright, shiny surfaces, e.g.
mirrors.

Color depends on material and how
it scatters light energy

in
plastics: color of point light source

in
metal: color of metal

in
others: combine color of light and material



How
much reflection you see depends on where you are.
But..
for non-perfect surfaces, you will still see a specular highlight when you move
a little 
bit away from the ideal reflection direction.



The Phong
lighting model:

Specular   =   Ks  x 
I  x cos(theta)f

As f increases, the highlight is more concentrated and the
surface
appears glossier.



The Phong
lighting model:

Specular   =   Ks  x 
I  x cos(theta)f

Specular   =   Ks  x  I  x (e · r)f



Using the "halfway vector" is common practice because calculating the reflection vector is expensive.

Rather
than calculating the exact specular reflection vector r, we can also calculate the halfway vector: 

h = l + e

Then
the angle β
between h and n (the surface normal) approximately
measures the falloff of intensity.

Note
that if h is
aligned with n, then
the viewer will see the brightest specular highlight.

Since
this is an approximation, it’s not exactly the same result as what we described
previously, but
if we pick a different value of the exponent, then we can achieve
similar, physically plausible results.





Sometimes
the light or surfaces are colored.

The
light intensity comes from the Ia, Id,
Is constants in our equation.  If we want
colored light, this means that 

constants need to have different values for R,
G, and B.  

The intensity and reflection coefficients are really 3-element arrays, with separate floats for R, G, and B.

Example materials from Hill (Computer Graphics Using OpenGL):



= because we can have colored lights or objects, these are 3D arrays (vec3) of floats for r, g, b

If there are N lights, then the total illumination for a point is the sum of the equation above for all lights.

or 

(e · r)s





Remember, everything we talked about
today relates to calculating the lighting at just a single point.

We need to calculate the lighting at many points on the surface so that we can color the whole object.

This process is called shading.



Flat Shading

Uses face normals.

Looks OK for a cube, but not for a sphere.

Smooth Shading

Per-vertex or per-pixel normals.

Best for smooth shapes.







Gouraud Phong

Here,
the vertex colors are calculated first using a 
lighting model like:       

Then,
the color for each interior pixel is set via 
trilinear interpolation.
    

Here, the vertex normals n1, n2, and n3 are 
interpolated to find
a normal each individual pixel.   

Then, using this pixel-specific normal,
the lighting for 
each pixel is calculated using a lighting model like:
    



Gouraud Phong



https://github.com/CSCI-4611-Fall-2022/Assignment-5
https://github.com/CSCI-4611-Fall-2022/Assignment-5
https://github.com/CSCI-4611-Fall-2022/Assignment-5
https://github.com/CSCI-4611-Fall-2022/Assignment-5
https://github.com/CSCI-4611-Fall-2022/Assignment-5

