


Lighting models the light/surface interactions to determine the final color and brightness for a specific point on a surface. 

Shading applies the lighting model to the entire surface, "filling in" each triangle.

Lighting Shading





As part of some illumination models, you can specify whether the light 
intensity varies with the distance between the object and the light source.



Local illumination only considers the light, the camera position, and the object 
material properties.  This is commonly used in games because it's fast!

However, it leaves out things realistic effects like shadows, reflections, etc.



On the other hand, we have global illumination, which takes into account the 
interaction of light from all the surfaces in the scene.

Ray tracing is the most famous example of global illumination, and a really fun 
algorithm to write – you will do this in CSCI 5607.  It models light bouncing around.



Radiosity is another example that models energy moving from emitters (lights) 
into the scene.

This illumination model is view independent.





Ambient light is background illumination.

Diffuse surfaces reflect light.  Some light goes to eye, some goes to scene.

Light bounces off of other objects and eventually reaches this surface element.  This is expensive to keep track of 
accurately, so we use a bit of a hack instead.

Ambient component

constant

independent of object position and viewer position

exists in most environments

some light hits surface from all directions (a crude approximation of indirect lighting/global illumination)

images without some form of ambient lighting look stark, they have too much contrast



Diffuse light is the illumination that a surface receives from a light source
that reflects equally in all directions.

The camera’s position or "eye point" does not matter.



Lambert's Law tells us the amount of light received at a given point p on the surface
is proportional to the angle between the direction to the light and the surface normal.



Lambert's Law:  The radiant energy D that a small surface patch receives from a light sources is:

Diffuse   =   Kd  x  I  x  cos(theta)

Kd = diffuse reflection coefficient

I = light intensity

theta = angle between the light vector and the surface normal



Diffuse   =   Kd  x  I  x  cos(theta)

for I = 1.0



Specular light is directed reflection from shiny surfaces.

Dependent on light source position and viewer position.

Typical of bright, shiny surfaces, e.g. mirrors.

Color depends on material and how it scatters light energy

in plastics: color of point light source

in metal: color of metal

in others: combine color of light and material



How much reflection you see depends on where you are.
But.. for non-perfect surfaces, you will still see a specular highlight when you move a little 
bit away from the ideal reflection direction.



The Phong lighting model:

Specular   =   Ks  x  I  x cos(theta)f

As f increases, the highlight is more concentrated and the surface appears glossier.



The Phong lighting model:

Specular   =   Ks  x  I  x cos(theta)f

Specular   =   Ks  x  I  x (e · r)f



Using the "halfway vector" is common practice because calculating the reflection vector is expensive.

Rather than calculating the exact specular reflection vector r, we can also calculate the halfway vector: 

h = l + e

Then the angle β between h and n (the surface normal) approximately measures the falloff of intensity.

Note that if h is aligned with n, then the viewer will see the brightest specular highlight.

Since this is an approximation, it’s not exactly the same result as what we described previously, but
if we pick a different value of the exponent, then we can achieve similar, physically plausible results.





Sometimes the light or surfaces are colored.

The light intensity comes from the Ia, Id, Is constants in our equation.  If we want colored light, this means that 

constants need to have different values for R, G, and B.  

The intensity and reflection coefficients are really 3-element arrays, with separate floats for R, G, and B.

Example materials from Hill (Computer Graphics Using OpenGL):



= because we can have colored lights or objects, these are 3D arrays (vec3) of floats for r, g, b

If there are N lights, then the total illumination for a point is the sum of the equation above for all lights.

or 

(e · r)s





Remember, everything we talked about today relates to calculating the lighting at just a single point.

We need to calculate the lighting at many points on the surface so that we can color the whole object.

This process is called shading.



Flat Shading

Uses face normals.

Looks OK for a cube, but not for a sphere.

Smooth Shading

Per-vertex or per-pixel normals.

Best for smooth shapes.







Gouraud Phong

Here, the vertex colors are calculated first using a 
lighting model like:       

Then, the color for each interior pixel is set via 
trilinear interpolation.
    

Here, the vertex normals n1, n2, and n3 are 
interpolated to find a normal each individual pixel.   

Then, using this pixel-specific normal, the lighting for 
each pixel is calculated using a lighting model like:
    



Gouraud Phong



https://github.com/CSCI-4611-Fall-2022/Assignment-5
https://github.com/CSCI-4611-Fall-2022/Assignment-5
https://github.com/CSCI-4611-Fall-2022/Assignment-5
https://github.com/CSCI-4611-Fall-2022/Assignment-5
https://github.com/CSCI-4611-Fall-2022/Assignment-5

