

vertex shader

fragment
shader

rasterizer

vertex shader

fragment
shader

rasterizer

Customizable via
shader programs!

initialize(): void

{

 // Compile and link a new shader program (a vertex shader + fragment shader)

 import phongVertexShader from './shaders/phong.vert'

 import phongFragmentShader from './shaders/phong.frag'

 const shader = new gfx.ShaderProgram(phongVertexShader, phongFragmentShader);

 shader.initialize(this.gl);

}

draw(): void

{

 // Makes the pre-compiled shader program active on the GPU

 gl.useProgram(shader.getProgram());

 // Set any "uniform" data for the shader, like the model, view, and projection matrices, light position(s),

etc..

 // Set array attributes such as the mesh's vertices, normals, and texcoords for input

 // Instruct the shader to draw elements (triangles)

}

CPU running your app

setVertices(vertices: number[]): void

{

	 this.gl.bindBuffer(this.gl.ARRAY_BUFFER, this.positionBuffer);

	 this.gl.bufferData(this.gl.ARRAY_BUFFER, new

Float32Array(vertices),

 this.gl.DYNAMIC_DRAW

);

}

We
get to program this stage! The small
program we write is called a vertex shader.

It
will run in parallel on the GPU once for each vertex.

The
input will be the vertex position, normal, texcoords, and
possibly other data stored in GPU memory.

The
output is (typically) a projected version of the vertex.

We will cover
syntax, handling normals,
and more soon.

For now, let’s just look at the highlighted lines, which show a typical program for rendering 3D geometry.

Fragment creation:

Find the bounding box
(min/max x, min/max y)

For each scan line in the bounding box,
find intersections with polygon edges

Create fragments for all pixels between intersections

Interpolation:

Use y distance to interpolate the two end

points of a scan line.

Then use x distance to interpolate interior
colors,
texture coordinates, normals and/or
other per-vertex data.

Interpolation:

Use y distance to interpolate the two end

points of a scan line.

Then use x distance to interpolate interior
colors,
texture coordinates, normals and/or
other per-vertex data.

Interpolation:

Use y distance to interpolate the two end

points of a scan line.

Then use x distance to interpolate interior
colors,
texture coordinates, normals and/or
other per-vertex data.

We
get to program this stage! The small
program we write is called a fragment shader.

It
will run in parallel on the GPU once for each fragment (pixel).

The
input to the fragment shader is determined by the vertex shader we wrote
earlier. We can send variables (defined
per-vertex)
from the vertex shader to the fragment shader.

Input variables get automatically interpolated by the rasterizer before they are read into the fragment shader.

Fragment shaders are the last step in the pipeline, and there is just a single output — the color of the pixel!

We will
cover syntax and passing data from the vertex shader and from the app to the
fragment shader soon.

For
now, let’s just look at the highlighted lines, which output a black color for
the pixel.

Vertex and fragment shaders
are written in the OpenGL Shading Language (GLSL).

The syntax resembles C/C++.

GLSL has evolved with different versions of the API. WebGL uses version 3.0 ES.
https://www.khronos.org/files/opengles3-quick-reference-card.pdf

The first line of the shader must declare the GLSL version number.
#version 300 es

https://www.khronos.org/files/opengles3-quick-reference-card.pdf

All shader programs have type void main().

Input and output happens on global
variables labeled as in/out.

Vertex shader must write to vec4 gl_Position.

Fragment shader must have an out vec4.

Data types (incomplete list)

Scalars:

float, int, uint, bool

Vectors:
vec2, vec3, vec4

Matrices:

mat2, mat3, mat4

Textures:
sampler2D,
sampler3D

Array indexing:

v[1], m[2][3],
etc.

Can also use v.x, v.y, v.z, v.w
(or r,g,b,a, or s,t,p,q)

Control flow same as C/C++:
if/else, switch/case/default, for, while,
do/while, break, continue

Other types:

bvec2, ivec3, uvec4, …

"Swizzling:"
vec2 a;
vec4 b = a.xyxx;
vec3 c = b.zyx;
vec4 d = a.xxxx + c.yxzy;

Flexible construction:
vec2 p;
vec4 q = vec4(p, 0, 0);
vec4 r = vec4(q.xyz, 1);

// usual C/C++ syntax

float square(float x) {

 return x*x;

}

// but you can also have output arguments

void multiOut(out float x, out float y) {

 x = 1;

 y = 2;

}

// or take an argument and change it

void doubleIt(inout float x) {

 x *= 2;

}

// No recursion allowed! (hard for GPU)

All
the usual math functions (trig, exponentials, etc.)

Geometric
functions:

length,
distance,
dot,
cross,
normalize,
reflect,
refract

Other
handy functions:

modf,
clamp,
mix,
step/smoothStep, lessThan, etc.
any/all/not, …

Textures usually store an image, but
really they could
store any data, which makes them very useful as a way
to pass all kinds of
data into shaders!

Most interesting shader effects make use
of textures in the fragment shader.

Application side:

The
texture to use inside the shader is a
parameter that in passed into the shader

program, similar to the
regular variables, except that textures use bindTexture().

GLSL side:

Calculate the 2D texture coordinate to use for the particular fragment.

Look up the color in the texture image at those coordinates using the texture() function.

standardDiffuse.png

toonDiffuse.png

Once the fragment shader has processed the fragment, a stencil test can be executed that has the option to discard fragments.

The stencil test is based on the content of yet another buffer that we can update during rendering to achieve interesting effects.

Initialize the stencil buffer to all zeros.1.

Initialize the stencil buffer to all zeros.1.

Draw object using the toon shader. 2.

Any pixels rendered by the toon fragment shader have their value in
the stencil buffer set to one.

3.

Initialize the stencil buffer to all zeros.1.

Draw object using the toon shader. 2.

Any pixels rendered by the toon fragment shader have their value in
the stencil buffer set to one.

3.

Initialize the stencil buffer to all zeros.1.

Draw object using the toon shader. 2.

Any pixels rendered by the toon fragment shader have their value in
the stencil buffer set to one.

3.

Draw the object again using the outline shader.
4.

The outline vertex shader enlarges the object by a specified thickness.
5.

Initialize the stencil buffer to all zeros.1.

Draw object using the toon shader. 2.

Any pixels rendered by the toon fragment shader have their value in
the stencil buffer set to one.

3.

Draw the object again using the outline shader.
4.

The outline vertex shader enlarges the object by a specified thickness.
5.

Any pixels with a non-zero value in the stencil buffer are discarded.6.

The outline fragment shader colors the remaining pixels as solid black.7.

Makes
it possible to "fake" fine variations in the
surface shape.

Similar
to texture mapping, the variation comes
from detail stored in an image.

Rather
than storing colors, the image stores a
height offset.

You
can use the height offset to modify the surface
normal at each pixel
inside a fragment shader.

The
quality is not as good as actually modeling the
geometry of each bump, but it
is much faster!

bump mapping a sphere actual bumpy object

Similar to bump mapping

Rather than storing a height, the texture
passed
into the fragment shader stores an actual normal.

<x,y,z> are stored as <r,g,b>

base texture

bump map

normal map

To do
bump mapping or normal mapping, you need to
define not just a normal, but also
a tangent vector.

These tutorials have nice descriptions of
how to
calculate the tangent for any generic triangle mesh:

http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-13-normal-mapping/

https://learnopengl.com/Advanced-Lighting/Normal-Mapping

http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-13-normal-mapping/
https://learnopengl.com/Advanced-Lighting/Normal-Mapping

vertex shader

fragment
shader

rasterizer

= because we can have colored lights or objects, these are 3D arrays (vec3) of floats for r, g, b

If there are N lights, then the total illumination for a point is the sum of the equation above for all lights.

or

(e · r)s

pscreen = Projection * View * Model * pobject

pscreen = Projection * View * Model * pobject

Model
matrix:
Translates, rotates, and/or scales each model (car, ball, ant, whatever)
to transform vertices
defined in object space into the
desired positions in world space.

View
matrix:
Translates and/or rotates the entire world to take
into account the current position and
orientation of
the camera. After applying the view
matrix, the camera will be at the origin looking down the -Z
axis, so the view
matrix needs to translate/rotate the whole world into
this arrangement. In this way, the view

matrix transforms world space into eye space.

ModelView matrix:
The combination of the two above matrices. Be careful about the correct ordering for the

multiplication. Model gets applied
first, then view, so the correct ordering is:
view * model

Projection
matrix:
Transforms eye space to 2D screen space,
taking perspective projection and aspect ratio of
the window into account.

Model
matrix:
Translates, rotates, and/or scales each model (car, ball, ant, whatever)
to transform vertices
defined in object space into the
desired positions in world space.

View
matrix:
Translates and/or rotates the entire world to take
into account the current position and
orientation of
the camera. After applying the view
matrix, the camera will be at the origin looking down the -Z
axis, so the view
matrix needs to translate/rotate the whole world into
this arrangement. In this way, the view

matrix transforms world space into eye space.

ModelView matrix:
The combination of the two above matrices. Be careful about the correct ordering for the

multiplication. Model gets applied
first, then view, so the correct ordering is:
view * model

Projection
matrix:
Transforms eye space to 2D screen space,
taking perspective projection and aspect ratio of
the window into account.

Normal
matrix: Same function as Model matrix, but
for use with normals!

Given a normal vector in object space

We want a normal vector in world space for the lighting equation

To transfer an object to world coordinates, we just multiplied its vertices by M

Can we just treat the normal vector the same way?

Given a normal vector in object space

We want a normal vector in world space for the lighting equation

To transfer an object to world coordinates, we just multiplied its vertices by M

Can we just treat the normal vector the same way?

Example: let's consider an M that
scales x
by .5 and y
by 2

Why
doesn't it work to transform the normal by the same M that
we use for the vertices?

Well,
actually it does work for translation, rotation, and uniform scales.

Non-uniform
scales cause a problem.
The normal is distorted by the opposite of the
scale applied to the surface.

2D example: scale x by 2.0 and y by 1.0.

To
get the correct normal, we need to invert the non-uniform scale.

If
not M,
then what?

Answer: (M -1)T

Here is a hand-wavy explanation:

The
problem is with non-uniform scales, so we want to apply the inverse of the
non-uniform scale to the normal.

However, we
want the rotation to remain the same as in M.

The
translation doesn’t matter because n is a
vector, i.e. nw=0.

For
the rotation part of M, the transformed portion is equal to the original,
i.e. (R-1)T =
R; the inverse reverses the
rotation, but the
transpose reverses it back to the original rotation.

For
the scale part of M, the inverse inverts the scale, but the transpose does
nothing. Scale is only along the diagonal, which doesn’t
change during a
transpose: (S(x,y,z)-1)T = S(x,y,z)-1 =
S(1/x, 1/y, 1/z)

You will not need to compute any of these matrices for assignment 5.

The model, view, projection, and normal matrices have already been calculated
for you and sent to each shader.

Depending on the shader, sometimes the model and view matrices have been
combined into the modelView matrix.

You will just need to figure out how the matrices are used in each shader.

