




The Invention of Drawing
Karl Friedrich Schinkle, 1830

Painting
based on mythical tale told by 
Pliny the Elder about a Corinthian man 
tracing the shadow
of departing lover. 



Plan view (orthographic projection) from
Mesopotamia, 2150 BC, 
earliest known technical drawing in existence.

Greek vases from late 6th
century BC show perspective(!)

Roman architect Vitruvius wrote
specifications of a plan with 
architectural illustrations, De Architectura
(rediscovered in 1414).  
The original
illustrations for these writings have been lost.

Theseus Killing the Minotaur by the
Kleophrades Painter



Parallel lines converge (in 1, 2, or 3
axes) to 
vanishing point(s)

Objects farther away are more foreshortened

(i.e.,
smaller) than closer ones

Example:
perspective cube



Methods of invoking three dimensional space:

shading suggests rounded, volumetric forms

converging lines suggest spatial depth of room

Not systematic.  Lines do not converge to

single vanishing point.

Giotto, Franciscan Rule Approved

Assisi, Upper Basilica, c.1295-1300



Published first treatise on perspective,

Della
Pittura, in
1435.

"A painting [the
projection plane] is the intersection 
of a visual pyramid [view
volume] at a given distance, 
with a fixed center
[center of projection] and
a 
defined position of light, represented by art with lines 
and colors on a
given surface [the rendering]." 



The Renaissance ushered in a new emphasis on

importance of individual viewpoint and world 
interpretation, power of
observation—particularly 
of nature (astronomy, anatomy, botany, etc.)

- Massaccio

- Donatello

- Leonardo

- Newton Ender, Tycho Brahe and Rudolph II in Prague (detail of clockwork), c. 1855



Concept of similar triangles described

both geometrically and mechanically in 
widely read treatise 
by Albrecht Dürer.

Albrecht Dürer, Artist Drawing a Lute 

Woodcut from Dürer’s work about the Art of Measurement.

Underweysung der messung, Nurenberg, 1525





Perspective projections imitate eyes or cameras and

looks more natural.  This is what we have
seen so far.

Parallel projections are also possible.  They are useful 
in engineering and architecture because they can be 
used for
measurements.



Perspective Projection: determined by Center of Projection
(COP).

Parallel Projection: determined by Direction of
Projection (DOP)
The projectors are parallel—they do not converge.  Alternatively, the COP is at infinity.



Used for:

engineering
drawings of machines, machine parts
working
architectural drawings

Pros:

accurate
measurement possible

all
views are at same scale

Cons:

does
not provide “realistic” view or sense of 3D form



Used for:

catalogue
illustrations

patent
office records

furniture
design

structural
design

3d
Modeling in real time (Maya, AutoCad,
etc.)

Pros:

don't
need multiple views

illustrates
3D nature of object

measurements
can be made to scale along principal axes

Cons:

lack
of foreshortening creates distorted appearance

more
useful for rectangular than curved shapes



Games
have been using isometric projection for ages. It all 
started in 1982 with Q*Bert and Zaxxon, which were made 
possible by advances in raster graphics hardware.

Still in use today when you want to see
things in distance as 
well as things close up (e.g. strategy, simulation games).

Technically some
games today aren't isometric but instead 
are a general axonometric (trimetric)
with arbitrary angles, 
but people still call them isometric to avoid learning a
new 
word. Other inappropriate terms used for axonometric views 
are "2.5D" and
"three-quarter." 





The
synthetic camera is the programmer's model to specify 3D view projection
parameters.

Each graphics package has its own but they are all (nearly)
equivalent.

General synthetic camera:
position
of camera
orientation
field
of view (wide angle, normal…)
depth
of field (near distance, far distance)
perspective
or parallel projection



Determining the position is analogous to a photographer 
deciding the vantage point from which to shoot a photo.

Three degrees of freedom: x, y, and z coordinates in 3-space

This x, y, z coordinate system is right-handed: 
If you open your right hand, align your palm and fingers with the +x axis, and curl 

your middle finger towards the +y axis, your thumb will point along the +z axis.



Orientation is specified by a point in 3D space to look at (or a direction to look in) and an angle of rotation about this direction.

Default (canonical) orientation is looking down the negative z-axis and up direction pointing straight up the y-axis.

In general, the camera is located at the origin and is looking at an arbitrary point with an arbitrary up direction.



Look Vector

The direction the camera is pointing

Three degrees of freedom; can be any vector in 3-space

Up Vector

Determines how the camera is rotated around the Look vector

For example, whether you are holding the camera horizontally 
or vertically (or in between)

Projection of Up vector must be in the plane perpendicular to 
the Look vector (this allows Up vector to be specified at an 
arbitrary angle to its Look vector)



Analogous to the size of film used in a camera

Determines proportion of width to height of image 
displayed on screen

Square viewing window has aspect ratio of 1:1

Movie theater "letterbox" format has aspect ratio of 2:1

NTSC television has an aspect ratio of 4:3, and HDTV is 16:9



Determines amount of perspective distortion in picture, 
from none (parallel projection) to a lot (wide-angle lens).

In a frustum, two viewing angles for width and height.

Choosing a View angle is analogous to a photographer 
choosing a specific type of lens (e.g., a wide-angle or 
telephoto lens).



Lenses made for distance shots often have a nearly parallel viewing angle and cause little perspective 
distortion, though they foreshorten depth.

Wide-angle lenses cause a lot of perspective distortion.



Don't want to draw things behind 
the camera.

Drawing lots of faraway things 
makes rendering slow.

There are a finite number of bits in 
the depth buffer! 



Some camera models take a focal length.

Focal length is a measure of ideal focusing range; approximates
behavior of a real camera lens.

Objects at distance equal to focal length from camera are rendered in focus.

Objects closer or farther away than focal length get blurred.

Focal length used in conjunction with clipping planes. Only objects within view volume 
are rendered, whether blurred or not. Objects outside of view volume still get discarded.



Position, Look vector, Up vector, Aspect ratio, Height angle, Clipping planes, and (optionally) Focal length together 
specify a truncated view volume.

Truncated view volume is a specification of bounded space that camera can "see."

A 2D view of the 3D scene can be computed from truncated view volume and projected onto the film plane.







The view matrix transforms world points into camera 
coordinates, a.k.a. the world-to-eye transform.

We can think of it as the matrix that:
moves the camera position (eye) to the origin
rotates to align u,v,n with x,y,z



We know that we want the (u, v, n) axes to have the following properties:

our arbitrary Look Vector will lie along the negative n-axis

a projection of the Up Vector into the plane defined by the n-axis as its normal will lie along the v-axis

the u-axis will be mutually perpendicular to the v and n-axes, and will form a right-handed 
coordinate system

Plan of attack: first find n from Look, then find u as a normal for the plane defined by Up and n, then find 
v  as a normal to the plane defined by n and u



The translation (move eye to origin) part is pretty easy.

We want to transform (ex, ey, ez) to (0,0,0).

Solution: translate by <-ex, -ey, -ez>.



We
also need to rotate so the camera ends up aligned properly with the x,y,z
axes.

How do we construct a rotation matrix that takes one set of axes and aligns it to another?



The first two columns are:

vectors
(3rd component is 0)

the
X-axis and Y-axis of the coordinate frame specified by the transformation -- if
a rotation matrix, these 
columns will show the vectors into which the X and
Y-axes rotate.

Third column is:

a
point (3rd component is 1)

the
origin of the coordinate frame





Now, this isn't exactly right. We want to go the other way, from uvn to xyz.



Now, this isn't exactly right. We want to go the other way, from uvn to xyz.

Recall, the inverse of a pure rotation
matrix is its transpose:



Transforms points in world coordinates to eye coordinates.

You can also think of this as going from the situation where the camera is at some arbitrary location and orientation 
in the scene to a situation where it is positioned and oriented in the standard arrangement as shown below.

You can apply this exact matrix manually onto a Camera in a graphics API, and it will work. BUT… we usually use a 
utility function such as LookAt().







Perspective Projection Parallel Projection





The view volume is transformed from
a 
truncated pyramid into a box.

For all the objects inside the view
volume, this 
means objects that are farther away will get 
"smushed" in the X and Y directions (i.e.,

objects that are farther away appear smaller). 

This is actually just what we want!



Just "drop" the Z coordinate for each vertex. 

Or, think of it as moving each vertex to the 
z=1 side of the cube.



Can we really just “drop” the Z coordinate? For projection, yes!


But, there is also the issue of depth ordering. 

We need to know the relative depth of each fragment so we can 
tell which color should end up on top.

So, we actually keep the -1 to +1 Z values.

Note, we don’t need the “actual” depth from the camera (this is 
costly to compute). We just need the relative depth. So, the -1 to 
+1 range is fine, and we call this pseudodepth.



To make sure we get the right color on top, we could sort 
everything front to back based on pseudodepth and then 
draw the objects in back to front order… but this is costly!


It is not just the objects or even the vertices that we would 
need to sort, we need to sort each fragment because 
sometimes objects are very close or intersect each other.

So, we adopt a different solution that let's us draw the 
objects in any order, but this means that in addition to the 
r,g,b color for each pixel, we also need to store the depth 
of each pixel.



Every time we write (r,g,b) to the color buffer, we also write 
pseudodepth to a Z buffer. 

Before rendering each fragment, the rasterizer has already figured 
out which pixel on the screen the fragment will be projected to. So, 
we look up the current pseudodepth for that pixel in the Z-Buffer 
and compare it to the pseudodepth for the new fragment.

If the new fragment is closer, it passes the Z-Test, and we run the 
fragment shader and write to the color buffer and z buffer.

If the Z-Test fails, we know there is some other object closer to the 
camera that blocks the view of this fragment, so we discard the 
fragment, and most of the time the pipeline is smart enough to not 
even run the fragment shader in this case.





How do we use matrix multiplication to transform from the original view 
volume to the canonical view volume in our two cases?

Perspective Projection Parallel Projection



All we have
to do is a non-uniform scale and a
translation.  We just use the
same 
transformation matrices we would use to transform a box!

Orthographic
parallel projection: projectors are perpendicular to projection plane.





In view space (a.k.a. eye space, camera space), the projection plane is parallel to xy and 
perpendicular to z.

Where does a point (x, y, z) project to?







We need the depth info to figure out which objects are closest to the camera.  We could calculate distance the usual 
way...



We need the depth info to figure out which objects are closest to the camera.  We could calculate distance the usual 
way...

But, this is a pretty expensive calculation to do for every point, and really we just need some measure of relative 
distance.

If we choose a and b correctly we can make z* vary from 1 to 1 (canonical cube)





All 3D graphics APIs provide a perspective matrix function (sometimes inside a Camera class) that creates
the special 4x4 matrix that transforms (x,y,z)
points into (x*,y*,z*) according to the equations we just derived:



All 3D graphics APIs provide a perspective matrix function (sometimes inside a Camera class) that creates
the special 4x4 matrix that transforms (x,y,z)
points into (x*,y*,z*) according to the equations we just derived:

The actual matrix looks like this:







CSCI 4611 course materials from Daniel Keefe, 2021

Carlbom, Ingrid and Paciorek, Joseph, Planar Geometric Projections and Viewing Transformations, 
Computing Surveys, Vol. 10, No. 4 December 1978.

Kemp, Martin, The Science of Art, Yale University Press, 1992

Mitchell, William J., The Reconfigured Eye, MIT Press, 1992

Foley, van Dam, et. al., Computer Graphics: Principles and
Practice, Addison-Wesley, 1995

Wernecke, Josie, The Inventor Mentor, Addison-Wesley, 1994


