M UNIVERSITY OF MINNESOTA

Driven to Discover®

Ray Casting

CSCI 4611: Programming Interactive Computer Graphics and Games

Evan Suma Rosenberg | CSCI4611 | Fall2022

This course content is offered under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International license.

Review: The Synthetic Camera

The synthetic camera is the programmer's model to specify 3D view projection parameters.
Each graphics package has its own but they are all (nearly) equivalent.

General synthetic camera:

® position and orientation of camera

o field of view

® aspectratio

e near and far clipping distances
perspective or parallel projection

Perspective View Volume

Up Vector

Width Angle

Look Vector

!
-

Height
Angle

[«—Near Distance —|

frustum = truncated

world space eye space canonical view volume

view matrix proj matrix

These two matrices implement all the parameters of our synthetic camera model!

Canonical View Volume to Screen Coordinates

The convert to 2D screen coordinates, we
just "drop" the Z coordinate.

However, we need to make sure to preserve
relative depth ordering so closer pixels are
drawn on top of ones that are further away.

(1.1

-1,-1,1)

(1,1,-1)

The “Z Buffer” and “Z Test”

Every time we write (r,g,b) to the color buffer, we also write
pseudodepth to a Z buffer.

Before rendering each fragment, the rasterizer has already figured
out which pixel on the screen the fragment will be projected to.

So, we look up the current pseudodepth for that pixel in the Z-
Buffer and compare it to the pseudodepth for the new fragment.

If the new fragment is closer, it passes the Z Test, and we run the
fragment shader and write to the color buffer and Z buffer.

If the Z Test fails, we know there is some other object closer to the
camera that blocks the view of this fragment, so we discard it.

(1.1

(_1 ‘_1)

(-1,-1,1)

(1,1,-1)

Semester Recap

1. Firstinteractive game with 2D graphics

2. Points, vectors, essential computer graphics math, simple physical simulation.

3. Intro to 3D modeling, tessellating complex shapes with triangles, morphing, storing data on the GPU.
4. Hierarchical transformation matrices, character animation from mocap data.

5. Writing your first shaders, the continuum from per-pixel physics-based to art-based shading.

6. Mouse-based 3D interfaces and interactive free-form 3D modeling.

User Interaction with 3D Graphics

® |n Space Minesweeper, we used a mouse to indicate 2D direction and speed of the ship.
® |n Car Soccer, we used the keyboard to drive a car around.

® |n Earthquake Visualization and Artistic Rendering, we used a couple of methods for
moving the virtual camera around in a 3D scene using the mouse.

® \We haven't yet used the mouse to directly select or manipulate 3D objects in the scene.

Let's Start with 3D Selection

Let's say we click the mouse on a 3D object in our scene.

We know:
® Mouse 2D position within the window when it was clicked.

e Details of the 3D scene (camera placement, model matrix for each object,
shape of each object).

How do we figure out which object we clicked?

Add Rays to your Essential Graphics Math Toolbox

Aray is defined by its origin (a point) and a direction (a vector).

Any point on thisrayis o + td for some scalar t = 0.

Ray Casting

00
camera I

filmplan
(i.e., near clipping pl

3D Selection with a Pick Ray (Single Mesh)

onMouseDown(event: MouseEvent): void

{

// Normalized Device Coordinates go from -1 to +1 in x and vy.
const deviceCoords = this.getDeviceCoordinates(event.x, event.y);

const ray = new gfx.Ray();
ray.setPickRay(deviceCoords, this.camera);

const intersection = ray.intersectsMesh(a_single_3D_mesh_in_the_scene);
if(intersection)
{
// If the ray intersects the mesh, then the method returns a Vector3.
// If there 1s no intersection, then it returns null.

Ray Intersection Tests

We must loop through every triangle in the mesh
and compute a ray-triangle intersection.

ray = gfx.Ray();

ray.setPickRay(deviceCoords, .camera);

GOpherGfX |mplements the MOller_Trumbore ral@ createlocal.. (method) Ray.createlocalRay(transform: gf..
. . . &2 direction
intersection algorithm. S intersectsBox

0 intersectsMesh

@ intersectsOrientedBoundingBox

) intersectsOrientedBoundingSphere
0 intersectsPlane

We should therefore use the intersectsMesh()
method only when absolutely necessary.

0 intersectsSphere
) intersectsTriangle
0 intersectsTriangles

& origin

(0 set

Perform intersection tests using simplified proxy
geometry when possible.

https://en.wikipedia.org/wiki/M%C3%B6ller%E2%80%93Trumbore_intersection_algorithm

Assignment 6: A World Made of Drawings

Inspired by Harold: A World Made of Drawings by Cohen et al. [ACM NPAR 2000]
https://mediaspace.umn.edu/media/t/1_gtj35asj

https://mediaspace.umn.edu/media/t/1_gtj35asj

Three Key Features in our Version

1. Drawing on the sky

2. Editing the ground

3. Creating and adding to billboards

Mouse-Based User Interface

We don't need any mode buttons in this user interface because we can
infer the user's intent from the context.

Stroke Made by Mouse 3D Modeling Operation

Starts in the sky Add a new stroke to the sky

Starts AND ends on the ground Edit the ground mesh to create hills and valleys
Starts on the ground and ends in the sky Create a new billboard

Starts on an existing billboard Add the stroke to the existing billboard

Live Demo

https://csci-4611-fall-2022.github.io/Builds/Assignment-6/

https://csci-4611-fall-2022.github.io/Builds/Assignment-6/
https://csci-4611-fall-2022.github.io/Builds/Assignment-6/
https://csci-4611-fall-2022.github.io/Builds/Assignment-6/
https://csci-4611-fall-2022.github.io/Builds/Assignment-6/
https://csci-4611-fall-2022.github.io/Builds/Assignment-6/
https://csci-4611-fall-2022.github.io/Builds/Assignment-6/
https://csci-4611-fall-2022.github.io/Builds/Assignment-6/

Feature #1: Drawing on the Sky

Harold’s World

“sky sphere”

mouse position on film plane
projected onto the “sky sphere”

camera m

Drawing a 2D “stroke” with the mouse on the screen

(-1,1) screen in normalized device coordinates

])

2D mouse movement on the screen generates a series of
OnMouseMove() events. If we collect these Vector2 objects in an array of
mouse positions, we can create a stroke, connecting them together into
a polyline to approximate a curved path.

(1.-1)

-1,1) screen in normalized device coordinates

each segment is made of
2 triangles, like this.

(1.-1)

We can't draw the polyline directly, we need to convert it into triangles first so
that we get a nice thick purple line to show up on the screen. So, we createa
simple mesh using the stroke as the centerline. Thisis a 3D mesh with the XY
normalized device coordinates and a constant Z value of -0.999.

Projecting to the Sky

e Create apick ray for each vertex in the 2D mesh.
e Shoot that ray out into 3D space until it intersects the inside of the sky (typically represented as a box or sphere).

® Move the vertex to the 3D point of intersection.

If you do this correctly, you should see no change when your program converts from a 2D mesh to a 3D mesh because the vertices should
still project to the exact same 2D location on the screen. It won't look like the stroke has moved at all until you start walking around!

b

Feature #2: Editing the Ground

Terrain-editing strokes must start and end on the ground. Call the starting and
ending points S and E... [T]hese two points, together with the y-vector, determine
a plane in R?, that we call the projection plane. The points of the terrain-editing
stroke are projected onto this plane (this projection, which is a curve in R, is
called the silhouette curve); the shadow of the resulting curve (as cast by a sun
directly overhead) is a path on the ground (we call this the shadow). Points near
the shadow have their elevation altered by a rule: each point P near the shadow

: : ! e
computes its new height (v-value), P, as a convex combination

pr_ JA—w(@)-Py+w(d)-h ifh#0
N b it h=0

where d is the distance from P to the projection plane, i is the y-value of the
silhouette curve over the nearest point on the projection plane to P, and w(d) is a
weighting function given by

o) = (0 (£)).

This gives a parabolic cross-section of width 10 for a curve drawn over level
terrain. Other choices for w would yield hills with different shapes that might be
more intuitive, but this particular choice gives reasonable results in most cases.

Note that if the silhouette curve bends back on itself (i.e. it defines a silhouette
that cannot be modeled using a heightfield), then the variation of height along the
shadow will be discontinuous. The resulting terrain then may have unexpected
features |

Terrain Editing Algorithm Step 1

(-1,1) screen in normalized device coordinates e Define a projection plane in 3D using

the first and last point of the stroke.

(1,-1)

Terrain Editing Algorithm Step 1

(-1,1) screen in normalized device coordinates e Define a projection plane in 3D using
the first and last point of the stroke.

e S§=startof stroke, projected onto the
ground in 3D

e E=end of stroke, projected onto the

ground in 3D
s

(1,-1)

Terrain Editing Algorithm Step 1

(-1,1) screen in normalized device coordinates e Define a projection plane in 3D using

the first and last point of the stroke.

e S§=startof stroke, projected onto the
ground in 3D

e E=end of stroke, projected onto the
ground in 3D

o up=27?

® normal=77?

(1 '_1)

Terrain Editing Algorithm Step 2

(-1,1) screen in normalized device coordinates ® Project the 2D stroke onto the

projection plane to create the
silhouette curve.

2d stroke points projected into 3D
onto the projection plane e How do we do this projection?

(’I ’_1)

Terrain Editing Algorithm Step 2

(-1,1) screen in normalized device coordinates ® Project the 2D stroke onto the

projection plane to create the
silhouette curve.

2d stroke points projected into 3D
onto the projection plane e How do we do this projection?

ay = gfx.
ray .setPickRay(deviceCoords, .camera);

@ createlocal... (method) Ray.createlocalRay(transform: gf..

P direction
intersectsBox
intersectsMesh
inter rientedBoundingBox
intersectsOrientedBoundingSphere
intersectsPlane
intersectsSphere
intersectsTriangle

(1 1) intersectsTriangles
) o

) origin

set

Terrain Editing Algorithm Step 3

(-1,1) screen in normalized device coordinates For each vertex P in the ground mesh:

Terrain Editing Algorithm Step 3

(-1,1) screen in normalized device coordinates For each vertex P in the ground mesh:

e Find the closest point to P that lies
within the projection plane.

® Hint: gfx.Plane has a project()
method that will compute a scalar
projection of a point onto the plane.

(1 !_1)

Terrain Editing Algorithm Step 3

(-1,1) screen in normalized device coordinates For each vertex P in the ground mesh:

e Find the closest point to P that lies
within the projection plane.

e Find h, the height of the silhouette
curve relative to P_in_plane.

(1 !_1)

Terrain Editing Algorithm Step 3

(-1,1) screen in normalized device coordinates For each vertex P in the ground mesh:

e Find the closest point to P that lies
within the projection plane.

e Find h, the height of the silhouette
curve relative to P_in_plane.

e Findd, the distance from P to the
projection plane

(1 !_1)

Terrain Editing Algorithm Step 3 = { O @

(-1,1) screen in normalized device coordinates For each vertex P in the ground mesh:

e Find the closest point to P that lies
within the projection plane.

e Find h, the height of the silhouette
curve relative to P_in_plane.

e Findd, the distance from P to the
projection plane

(1,-1) Adjust P's height based on h.

Feature #3: Drawing Billboards

(-1,1) screen in normalized device coordinates

>

(1,-1)

This feature is already fully implemented in the assignment starter code.

Feature #3: Drawing Billboards

Like the sky strokes, we can start with the mesh in normalized device coordinates that is defined in 2D and then
project this into 3D space.

But what should we project onto this time?

Feature #3: Drawing Billboards

We can define a plane in 3d-space with a point that lies within the plane and a normal.
We'll use the first point of the stroke, which we know must intersect the ground as the anchor_point.

What should we use for the normal of this plane?

anchor_point (3D)

Feature #3: Drawing Billboards

Once we have defined a plane to project onto, creating a 3D triangle mesh based on the original 2D
triangles follows a similar approach as for the sky.

How to Actually Render the Billboards?

In computer graphics, a billboard is a 2D planar object that rotates to face
the camera as the viewer moves around the 3D scene.

Billboard Coordinate System and Transformations

y

z
billboard local coordinate system

Before saving the 3D mesh for the billboard, transform its vertices
so that they are defined within a more convenient billboard
coordinate system.

e origin=billboard's anchor point

e -z=billboard plane normal

When updating the scene, transform the billboard object as
follows:

® translate to the anchor point

rotate the object to lookAt() the camera

