

The synthetic camera is the programmer's model to specify 3D view projection parameters.

Each graphics package has its own but they are all (nearly) equivalent.

General synthetic camera:
position and orientation of camera
field of view
aspect ratio
near and far clipping distances
perspective or parallel projection

These two matrices implement all the parameters of our synthetic camera model!

The convert to 2D screen coordinates, we
just "drop" the Z coordinate.

However, we need to make sure to preserve
relative depth ordering so closer pixels are
drawn on top of ones that are further away.

Every time we write (r,g,b) to the color buffer, we also write
pseudodepth to a Z buffer.

Before rendering each fragment, the rasterizer has already figured
out which pixel on the screen the fragment will be projected to.

So, we look up the current pseudodepth for that pixel in the Z-
Buffer and compare it to the pseudodepth for the new fragment.

If the new fragment is closer, it passes the Z Test, and we run the
fragment shader and write to the color buffer and Z buffer.

If the Z Test fails, we know there is some other object closer to the
camera that blocks the view of this fragment, so we discard it.

First interactive game with 2D graphics1.

Points, vectors, essential computer graphics math, simple physical simulation.2.

Intro to 3D modeling, tessellating complex shapes with triangles, morphing, storing data on the GPU. 3.

Hierarchical transformation matrices, character animation from mocap data.4.

Writing your first shaders, the continuum from per-pixel physics-based to art-based shading.5.

Mouse-based 3D interfaces and interactive free-form 3D modeling.6.

In Space Minesweeper, we used a mouse to indicate 2D direction and speed of the ship.

In Car Soccer, we used the keyboard to drive a car around.

In Earthquake Visualization and Artistic Rendering, we used a couple of methods for
moving the virtual camera around in a 3D scene using the mouse.

We haven't yet used the mouse to directly select or manipulate 3D objects in the scene.

Let's say we click the mouse on a 3D object in our scene.

We know:
Mouse 2D position within the window when it was clicked.
Details of the 3D scene (camera placement, model matrix for each object,
shape of each object).

How do we figure out which object we clicked?

A ray is defined by its origin (a point) and a direction (a vector).

Any point on this ray is o + td for some scalar t ≥ 0.

onMouseDown(event: MouseEvent): void

{

 // Normalized Device Coordinates go from -1 to +1 in x and y.

 const deviceCoords = this.getDeviceCoordinates(event.x, event.y);

 const ray = new gfx.Ray();

 ray.setPickRay(deviceCoords, this.camera);

 const intersection = ray.intersectsMesh(a_single_3D_mesh_in_the_scene);

 if(intersection)

 {

 // If the ray intersects the mesh, then the method returns a Vector3.

 // If there is no intersection, then it returns null.

 }

}

We must loop through every triangle in the mesh
and compute a ray-triangle intersection.

GopherGfx implements the Möller–Trumbore
intersection algorithm.

We should therefore use the intersectsMesh()
method only when absolutely necessary.

Perform intersection tests using simplified proxy
geometry when possible.

https://en.wikipedia.org/wiki/M%C3%B6ller%E2%80%93Trumbore_intersection_algorithm

Inspired by Harold: A World Made of Drawings by Cohen et al. [ACM NPAR 2000]
https://mediaspace.umn.edu/media/t/1_gtj35asj

https://mediaspace.umn.edu/media/t/1_gtj35asj

Drawing on the sky1.

Editing the ground2.

Creating and adding to billboards3.

We don't need any mode buttons in this user interface because we can
infer the user's intent from the context.

https://csci-4611-fall-2022.github.io/Builds/Assignment-6/
https://csci-4611-fall-2022.github.io/Builds/Assignment-6/
https://csci-4611-fall-2022.github.io/Builds/Assignment-6/
https://csci-4611-fall-2022.github.io/Builds/Assignment-6/
https://csci-4611-fall-2022.github.io/Builds/Assignment-6/
https://csci-4611-fall-2022.github.io/Builds/Assignment-6/
https://csci-4611-fall-2022.github.io/Builds/Assignment-6/

2D mouse movement on the screen generates a series of
OnMouseMove() events. If we collect these Vector2 objects in an array of
mouse positions, we can create a stroke, connecting them together into
a polyline to approximate a curved path.

We can't draw the polyline directly, we need to convert it into triangles first so
that we get a nice thick purple line to show up on the screen. So, we create a
simple mesh using the stroke as the centerline. This is a 3D mesh with the XY
normalized device coordinates and a constant Z value of -0.999.

Create a pick ray for each vertex in the 2D mesh.

Shoot that ray out into 3D space until it intersects the inside of the sky (typically represented as a box or sphere).

Move the vertex to the 3D point of intersection.

If you do this correctly, you should see no change when your program converts from a 2D mesh to a 3D mesh because the vertices should
still project to the exact same 2D location on the screen. It won't look like the stroke has moved at all until you start walking around!

Define a projection plane in 3D using
the first and last point of the stroke.

Define a projection plane in 3D using
the first and last point of the stroke.

S = start of stroke, projected onto the
ground in 3D

E = end of stroke, projected onto the
ground in 3D

Define a projection plane in 3D using
the first and last point of the stroke.

S = start of stroke, projected onto the
ground in 3D

E = end of stroke, projected onto the
ground in 3D

up = ???

normal = ???

Project the 2D stroke onto the
projection plane to create the
silhouette curve.

How do we do this projection?

Project the 2D stroke onto the
projection plane to create the
silhouette curve.

How do we do this projection?

For each vertex P in the ground mesh:

For each vertex P in the ground mesh:

Find the closest point to P that lies
within the projection plane.

Hint: gfx.Plane has a project()
method that will compute a scalar
projection of a point onto the plane.

For each vertex P in the ground mesh:

Find the closest point to P that lies
within the projection plane.

Find h, the height of the silhouette
curve relative to P_in_plane.

For each vertex P in the ground mesh:

Find the closest point to P that lies
within the projection plane.

Find h, the height of the silhouette
curve relative to P_in_plane.

Find d, the distance from P to the
projection plane

For each vertex P in the ground mesh:

Find the closest point to P that lies
within the projection plane.

Find h, the height of the silhouette
curve relative to P_in_plane.

Find d, the distance from P to the
projection plane

Adjust P's height based on h.

This feature is already fully implemented in the assignment starter code.

Like the sky strokes, we can start with the mesh in normalized device coordinates that is defined in 2D and then
project this into 3D space.

But what should we project onto this time?

We can define a plane in 3d-space with a point that lies within the plane and a normal.

We'll use the first point of the stroke, which we know must intersect the ground as the anchor_point.

What should we use for the normal of this plane?

Once we have defined a plane to project onto, creating a 3D triangle mesh based on the original 2D
triangles follows a similar approach as for the sky.

In computer graphics, a billboard is a 2D planar object that rotates to face
the camera as the viewer moves around the 3D scene.

Before saving the 3D mesh for the billboard, transform its vertices
so that they are defined within a more convenient billboard
coordinate system.

origin = billboard's anchor point

-z = billboard plane normal

When updating the scene, transform the billboard object as
follows:

translate to the anchor point

rotate the object to lookAt() the camera

