

The SRT closes tomorrow.

The optional bonus quiz is now available on Canvas.

It is due on Tuesday, December 20 at 6pm.

Everyone has been issued a 0 on the bonus quiz by default.
Canvas has been set to automatically drop your lowest quiz grade.

Structure of interactive graphics programs

Points and vectors

2D/3D transformations

Polygonal modeling and mesh data structures

Texture mapping

Hierarchical transformations and animated characters

Lighting models

Shader programs

Projection and the virtual camera

Ray casting for 3D user interfaces

In this class, you gained experience using a web-based computer graphics toolkit that was
created specifically for this course.

You will find a very similar structure in almost all graphics libraries and game engines.

If you know the core
concepts (math library, meshes, shaders,
textures) you can pick up
almost any graphics toolkit and find the
corresponding functions.

Also, since the shaders use GLSL, you can write custom shaders for
pretty much any toolkit
that uses OpenGL.

G3D

Irrlicht Engine

OGRE

Hoarde3D

OpenSceneGraph (OSG)

OpenSG
Visualization Toolkit (VTK)

Three.js

Babylon.js
https://casual-effects.com/g3d

This style of game engine is very popular. There
are tons of tutorial videos and examples to help
developers get started.

Unity

Unreal

CryEngine

Godot

1. Find the 3D graphics primitives (cube, sphere, cylinder, etc.)

2. Find the Math library (Vector3, Matrix4, Transform, Ray, etc.)

3. Find the material properties (colors, images, textures, etc.).

4. Find the shaders.

Game engines will come with a variety built-in shaders, and you could potentially write an entire game
without writing a line of shader code.

However, many games will implement custom shaders to implement visual effects or achieve a specific
aesthetic.

Writing your shaders from scratch is
often easier because modifying the built-in shaders, because the
professional toolkits will often have very complex shader code that include normal mapping, reflections,
transparency, and other effects integrated into one unified shader.

Shaders will generally be written in GLSL (OpenGL), HLSL (DirectX), or sometimes a custom format that is
a high-level wrapper around one of the two.

//Vertex Shader

void MainVertexShader(

 float4 InPosition : ATTRIBUTE0,

 float2 InUV : ATTRIBUTE1,

 out float2 OutUV : TEXCOORD0,

 out float4 OutPosition : SV_POSITION

)

{

 OutPosition = InPosition;

 OutUV = InUV;

}

//Fragment Shader

void MainPixelShader(

 in float2 UV : TEXCOORD0,

 out float4 OutColor : SV_Target0

)

{

 OutColor = float4(UV, 1.0, 1.0);

}

//Vertex Shader

in vec4 InPosition;

in vec2 InUV;

out vec2 UV;

void main()

{

 gl_Position = InPosition;

 UV = InUV;

}

//Fragment Shader

in vec2 UV;

void main()

{

 gl_FragColor = vec4(UV, 1.0, 1.0);

}

HLSL (Unity, Unreal) GLSL (Three.js, Godot, G3D, countless others)

5. Find the higher-level things we have learned in the assignments:

Initialization, update, and draw methods: You will always find methods where you can initialize the graphics, create objects in the
scene, and implement code that needs to execute once per frame as needed for animation, etc.

Physics
simulation: You can always do it by hand using points, vectors, etc. Some game engines will also have a built-in physics engine
to handle collision detection, gravity, bouncing, etc.

Hierarchical transformations: Every toolkit will have some ability to organize models in the scene in a hierarchy. Unity has a graph of
GameObjects, where each has a parent and a list of children.

Character animation: – Many toolkits will support some form of character animation using hierarchical transformations, like we’ve
done. You will need to consider the same concepts we have in class (blending between mocap motions, etc.).

Camera and user interface: There is often a mode for drawing 2D text and lines
on top of the screen, like the 2D strokes in the final
assignment. Sometimes this includes pre-defined routines
for drawing buttons, sliders, etc.
You will always find a Camera class or
something similar that allows you
to create 3D pick rays from the mouse position to create 3D user interfaces.

Fancy real-time rendering effects: Most are just extensions of what you have learned about using textures inside
shaders and adjusting vertex positions and lighting calculations. Examples include normal mapping, bump mapping,
reflections, "moving textures" like water, transparency effects, non-photorealistic effects, and more.

AI: Crowd simulation, flocking behaviors, natural language processing, terrain generation, etc.

VR support: The standards for VR/AR/XR are still actively being developed in many engines. Honestly Unity's API for
this is still not that great and often changes between major versions, but it is really cool that if you are not doing
anything too fancy in terms of the UI, it is actually quite easy to deploy to a PC-based VR system or mobile VR headset.

If I had to guess, I would estimate that 90% of graphics toolkits use a right-handed coordinate system.

Unity happens to be in the 10% that picked left handed. Ugh.

Thankfully, all the math really works out the same either way. Just switch to using the "left hand rule" rather than
the "right
hand rule" for cross products.

Also be careful when importing models from 3D modeling software or connecting to other systems outside of Unity,
like VR tracking systems or your phone's inertial tracker. Almost everybody else uses right handed coordinates.

You can convert points and vectors from right-handed to left-handed by negating the one of the coordinates.
(When Unity loads 3D models stored in right-handed format it usually automatically negates the X coordinate.)

Converting transformation matrices that include rotations is a bit trickier but can also be done.

Different game engines will also adopt different conventions for how to

represent rotations.

3D Rotations can be represented in several
different ways:
Euler angles (easiest to talk about, but several problems)
Rotation matrices
Quaternions (best for interpolation)

Unity uses all three representations for rotations:

Euler angles are first shown in the editor.

Each frame, they are converted to quaternions to store in a GameObject.

Programmers can also convert them to rotation matrices, apply a
series of transformations in a script, and then convert it back to a
quaternion.

I had a lot of fun teaching this course, and I hope you had fun taking it too!

If you are interested in chatting about opportunities to get more experience with computer
graphics, virtual reality, and/or research, please feel free to reach out!

I had a lot of fun teaching this course, and I hope you had fun taking it too!

If you are interested in chatting about opportunities to get more experience with computer
graphics, virtual reality, and/or research, please feel free to reach out!

For those who are wondering about my video
game plans over winter break!

