M UNIVERSITY OF MINNESOTA

Driven to Discover®

Wrap Up

CSCI 4611: Programming Interactive Computer Graphics and Games

Evan Suma Rosenberg | CSCI4611 | Fall2022

This course content is offered under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International license.

Reminder: Complete the SRT!

® Live

Student Rating of Teaching - Fall 2022

CSCl 4611 001 Programming Graphics
and Games; Instructional Staff: Bridger...

118 nvited \
0 Started
23 Responded 191

0 Opted Out

Ends on: 2022-12-14

The SRT closes tomorrow.

Bonus Quiz

The optional bonus quiz is now available on Canvas.

It is due on Tuesday, December 20 at 6pm.

Everyone has been issued a 0 on the bonus quiz by default.
Canvas has been set to automatically drop your lowest quiz grade.

Recap: First Half of Semester

® Structure of interactive graphics programs
® Points and vectors
e 2D/3D transformations

® Polygonal modeling and mesh data structures

® Texture mapping

Recap: Second Half of Semester

e Hierarchical transformations and animated characters
e Lighting models
e Shader programs

® Projection and the virtual camera

e Ray casting for 3D user interfaces

Computer Graphics Toolkits

® |n this class, you gained experience using a web-based computer graphics toolkit that was
created specifically for this course.

® You will find a very similar structure in almost all graphics libraries and game engines.

e |f you know the core concepts (math library, meshes, shaders, textures) you can pick up
almost any graphics toolkit and find the corresponding functions.

® Also, since the shaders use GLSL, you can write custom shaders for pretty much any toolkit
that uses OpenGL.

What else is out there? (Graphics APIs)

e G3D

® Irrlicht Engine

e OGRE

® Hoarde3D

® OpenSceneGraph (OSG)

® OpenSG Visualization Toolkit (VTK)

® Three.js

Babylon.js

https://casual-effects.com/g3d

What else is out there? (IDE + Scripting)

This style of game engine is very popular. There
are tons of tutorial videos and examples to help
developers get started.

3t
a e xm3 @

e Unity

e Unreal

e CryEngine

Godot

Let's take a little tour of Unity.

FYI - you can download it free for personal use.

Transitioning to a new toolkit or game engine

1. Find the 3D graphics primitives (cube, sphere, cylinder, etc.

€ 4611 Class - SampleScene - PC, Mac & Linux Standalone - Unity 2019.2.72 Education™ <DX11> = [m] X

File Edit Assets GameObject Component Window Help
Create Empty Ctrl+ Shift+N
Create Empty Child Alt+Shift+N
3D Object Cube
2D Object Sphere
Effects Capsule t Al S -
Light Cylinder)
Audio Plane
Video Quad
ul

Camera

Assets

Text - TetMeshPro

Ragdoll...
Center On Children
Terrain

Make Parent iee

Clear Parent Wind Zone

Set as first sibling Ctrl+= 1D Tet
Set as last sibling Ctrl+-

Move To View Ctrl+ Alt+F

Align With View Ctrl+Shifts+F

Align View to Selected

Toggle Active State Alt+Shift+A

7 05 PM
Q Type here to search i X ~ 010 8

Transitioning to a new toolkit or game engine

2. Find the Math library (Vector3, Matrix4, Transform, Ray, etc.

Q unity | DOCUMENTATION Manual Search scripting Q unity.com =9
Version: 2019.2-
Scripting API Vector3
B UnityEngine Y A Leave feedback
Ed UnityEngine.Accessibility
UnityEngine.Al P
£ UnityEng Description
E3 UnityEngine.Analytics
E3 UnityEngine.Android Representation of 3D vectors and points
3 UnityEngine. Animations This structure is used throughout Unity to pass 3D positions and directions around. It also contains functions for doing common vector operations G S t el t| cw
E3 UnityEngine.Apple
[UnityEngine.Assertions Besides the functions listed below, other classes can be used to manipulate vectors and points as well. For example the Quaternion and the Matrix4x4 D Dfa |t
classes are useful for rotating or transforming vectors and points. g u
E3 UnityEngine.Audio
E3 UnityEngine.CrashReportHandler Stati -
atic Properties : ;
E3 UnityEngine.Diagnostics p Trd n Sf() rm
E3 UnityEngine.Events back Shorthand for writing Vector3(0, 0,-1). F) o< Itl on
v 2 -
E3 UnityEngine.Experimental Shorthand for writing Vector3(0, -1, 0))
E3 UnityEngine.ios) ntatio
¢ Shorthand for writing Vector3(0, 0, 1). F Utdt| on
E3 UnityEngine.Jobs
E3 UnityEngine.Lumin left Shorthand for writing Vector3(-1, 0, 0).
E3 UnityEngine.Networking negativelnfinity Shorthand for writing Vector3(float.Negativelnfinity, float. Negativelnfinity, float.Negativelnfinity).
E3 UnityEngine.Playables one Shorthand for writing Vector3(1, 1, 1).
UnityEngine. Profilin
a YEng 9 positivelnfinity Shorthand for writing Vector3(float. Positivelnfinity, float. Positivelnfinity, float. Positivelnfinity)
E3 UnityEngine.Rendering
E3 UnityEngine.SceneManagement right Shorthand for writing Vector3(1, 0, 0).
E3 UnityEngine.Scripting up Shorthand for writing Vector3(0, 1, 0).
E3 UnityEngine.Serialization zero Shorthand for writing Vector3(0, 0, 0).
E3 UnityEngine.SocialPlatforms
E3 UnityEngine.Sprites N
Properties
E3 UnityEngine.TestTools
E3 UnityEngine.TextCore magnitude Returns the length of this vector (Read Only)

ransitioning to a new toolkit or game engine

3. Find the material properties (colors, images, textures, etc.).

Collab ~ A Account yer Layout

© Inspector
Assets . . : . . Create S smpbells Impor etting W 3 %,
5 - W Favorites Assets

e Q All Material

Main M
'amll‘;is Q All Models o —. Texture Type
o ’) Q All Prefabs .

Open

L= Texture
85 Packages = A t
== Assels

8= S

Metallic Alpha
»Cenes

xture Alpha
Packages

Alpha Is Transparenc

MyMaterial

pM
campbells Filter Mode

Secondary Maps
oDetail Albedo x2
Normal Map
Tilin =048
MyMateria Resize Algorithm Mitchell
Format Automatic

Forward Rendering Options C npre Normal Quality
r Highlights &
0 v

Use Crunch Compres

Advanced Options
Enable
Doubl

Transitioning to a new toolkit or game engine

Q unity | DOCUMENTATION

Version: 2019.2 ~

Unity Manual

[1 -+ I+ I+

Unity User Manual (2019.2)
Packages

Working in Unity

Importing

2D

Graphics

B Graphics Overview

[+]
[+]
=

IooooBoaon

Lighting
Cameras

Materials, Shaders & Textures

Textures

Creating and Using Materials
E3 Standard Shader

Standard Particle Shaders

Physically Based Rendering
Material Validator

Accessing and Modifying
Material parameters via script

Writing Shaders
E3 Legacy Shaders
Video overview
Terrain Engine
Tree Editor
Particle Systems
Post-processing overview
Advanced Rendering Features

Procedural Mesh Geometry

4. Find the shaders.

Scripting API Search manual Q

unity3d.com =)

Language : English~

Writing Shaders

Writing Shaders

Shaders in Unity can be written in one of three different ways:

Surface Shaders

Surface Sha re your best option if your Shader needs to be affected by lights and shadows. Surface Shaders make it easy to write complex
Shaders in a compact way - it's a higher level of abstraction for interaction with Unity’s lighting pipeline. Most Surface Shaders automatically support

both forward and deferred lighting. You write Surface Shaders in a couple of lines of Cg/HLSL, and a lot more code gets auto-generated from that

Do not use Surface Shaders if your Shader is not doing anything with lights. For post-processed effects or many special-effect Shaders, Surface
Shaders are a suboptimal option, since they do a bunch of lighting calculations for no good reason
Vertex and Fragment Shaders

Vertex and Fragment Shaders are required if your Shader doesn't need to interact with lighting, or if you need some very exotic effects that the Surface
Shaders can't handle. Shader programs written this way are the most flexible way to create the effect you need (even Surface Shaders are automatically
converted to a bunch of Vertex and Fragment Shaders), but that comes at a price: you have to write more code and it's harder to make it interact with
lighting. These Shaders are written in Cg/HLSL as well.

Fixed Function Shaders

Fixed Function Shaders are legacy Shader syntax for very simple effects. It is advisable to write programmable Shaders, since that allows much more
flexibility. Fixed function shaders are entirely written in a language called ShaderLab, which is similar to Microsoft's .FX files or NVIDIA'S CgFX
Internally, all Fixed Function Shaders are converted into Vertex and Fragment Shaders at shader import time

ShaderlLab

Regardless of which type you choose, the actual Shader code is always wrapped in ShaderLab, which is used to organize the Shader structure. It looks
like this

< SampleScen
® Main Camer

® Dir

onal

Folder

C# Script

Shader

Testing

Playables

Assembly Definition
Assembly Definition Reference
TextMeshPro

Scene

Prefab Variant
Audio Mixer

Material
Lens Flare

Render Texture

Lightmap Parameters
Custom Render Texture
Sprite Atlas

Sprites

Animator Controller
Animation

Animator Override Controller
Avatar Mask

Timeline

Signal

Physic Material

Physics Material 2D

GUI Skin

Custom Font

Legacy

UlElements Editor Window
Brush

Terrain Layer

Create

Show in Explorer
Standard Surface Shader
Unlit Shader

Image Effect Shader
Compute Shader

Shader Variant Collection

Tmport New Asset...
Import Package

Export Package...

Find References In Scene

Select Dependencies

Refresh
Reimport

Reimport All

Extract From Prefab

Run API Updater..

Update UlElements Schema

Open C# Project

ft+Ctrl+C

Ctrl+R

Notes about writing custom shaders

® Game engines will come with a variety built-in shaders, and you could potentially write an entire game
without writing a line of shader code.

e However, many games will implement custom shaders to implement visual effects or achieve a specific
aesthetic.

e \Writing your shaders from scratch is often easier because modifying the built-in shaders, because the
professional toolkits will often have very complex shader code that include normal mapping, reflections,
transparency, and other effects integrated into one unified shader.

Shaders will generally be written in GLSL (OpenGL), HLSL (DirectX), or sometimes a custom format that is
a high-level wrapper around one of the two.

GLSL vs. HLSL

HLSL (Unity, Unreal)

//Vertex Shader

void MainVertexShader (
float4 InPosition : ATTRIBUTEO,
float2 InUV : ATTRIBUTE1,
out float2 OutUV : TEXCOORDO,

out float4 OutPosition : SV_POSITION

)

OutPosition = InPosition;
OutUVv = Inuv;

//Fragment Shader
void MainPixelShader (
in float2 UV : TEXCOORDO,
out float4 OutColor : SV_Target0

)

OutColor = float4(uv, 1.0, 1.0);

GLSL (Three.js, Godot, G3D, countless others)

//Vertex Shader
in vec4 InPosition;
in vec2 Inuv;

out vec2 UV;

void main()

{
gl_Position = InPosition;
UV = Inuv;

//Fragment Shader
in vec2 UV;

void main()

{
gl_FragColor = vec4(UV, 1.0,

1.0);

Transitioning to a new toolkit or game engine

5. Find the higher-level things we have learned in the assignments:

Initialization, update, and draw methods: You will always find methods where you can initialize the graphics, create objectsin the
scene, and implement code that needs to execute once per frame as needed for animation, etc.

Physics simulation: You can always do it by hand using points, vectors, etc. Some game engines will also have a built-in physics engine
to handle collision detection, gravity, bouncing, etc.

Hierarchical transformations: Every toolkit will have some ability to organize models in the scene in a hierarchy. Unity has a graph of
GameObjects, where each has a parent and a list of children.

Character animation: - Many toolkits will support some form of character animation using hierarchical transformations, like we’ve
done. You will need to consider the same concepts we have in class (blending between mocap motions, etc.).

Camera and user interface: There is often a mode for drawing 2D text and lines on top of the screen, like the 2D strokes in the final
assignment. Sometimes thisincludes pre-defined routines for drawing buttons, sliders, etc. You will always find a Camera class or
something similar that allows you to create 3D pick rays from the mouse position to create 3D user interfaces.

Some additional game engine features

Fancy real-time rendering effects: Most are just extensions of what you have learned about using textures inside
shaders and adjusting vertex positions and lighting calculations. Examples include normal mapping, bump mapping,
reflections, "moving textures" like water, transparency effects, non-photorealistic effects, and more.

Al: Crowd simulation, flocking behaviors, natural language processing, terrain generation, etc.

VR support: The standards for VR/AR/XR are still actively being developed in many engines. Honestly Unity's API for
this is still not that great and often changes between major versions, but it is really cool that if you are not doing
anything too fancy in terms of the Ul, it is actually quite easy to deploy to a PC-based VR system or mobile VR headset.

Let's discuss two final graphics math concepts that | have seen
confuse students when working with game engines such as Unity.

Watch out for Left-handed vs. Right-handed

Up Vector Up Vector

/ . |
Fonvard vector Forward vector I”d‘?x_ﬁ inger L

2 _ ‘&‘ “Right”

Vector

Left Hand Coordinate System Right Hand Coordinate System

e |f | had to guess, | would estimate that 90% of graphics toolkits use a right-handed coordinate system.
e Unity happens to bein the 10% that picked left handed. Ugh.

e Thankfully, all the math really works out the same either way. Just switch to using the "left hand rule" rather than
the "right hand rule" for cross products.

® Also be careful when importing models from 3D modeling software or connecting to other systems outside of Unity,
like VR tracking systems or your phone's inertial tracker. Almost everybody else uses right handed coordinates.

® You can convert points and vectors from right-handed to left-handed by negating the one of the coordinates.
(When Unity loads 3D models stored in right-handed format it usually automatically negates the X coordinate.)

Converting transformation matrices that include rotations is a bit trickier but can also be done.

Watch out for Rotations

Different game engines will also adopt different conventions for how to
represent rotations.

3D Rotations can be represented in several different ways:
e Euler angles (easiest to talk about, but several problems)
e Rotation matrices
® Quaternions (best for interpolation)

Watch out for Rotations

Unity uses all three representations for rotations:
e Euler angles are first shown in the editor.
e Eachframe, they are converted to quaternions to store in a GameObject.

e Programmers can also convert them to rotation matrices, apply a
series of transformations in a script, and then convert it back to a

guaternion.

Some additional opportunities for those
interested in computer graphics and games.

(unless you are imminently about to graduate,
in which case congratulations!)

Courses that can build on what you have already learned

e CSCI5607: Computer Graphics 1

Typically offered once per year in the Spring (taught by Victoria Interrante).

This course is more theoretical/mathematical than this class.

e CSCI 5611: Animation and Planning in Games
Typically offered once per year in the Fall (taught by Stephen Guy).

e CSCI 5609: Visualization
Typically offered once per year in the Spring (taught by Dan Keefe).

e CSCI 5619: Virtual Reality and 3D Interaction
Typically offered once per year in the Fall (usually taught by me).

e CSCI 8980: Special Topics Courses

These are special one-time courses. Advanced undergraduates can take these classes with
instructor permission!

Getting involved in a research lab

® Research is an opportunity to more deeply explore
topic areas that interest you.
You don't need to be a graduate student to take advantage of this!

¢ Building a mentorship connection with a professor.
It's also a fantastic way to get very strong recommendation letters!

e Explore whether graduate school is right for you.

® You never know what you might discover!

This was my origin story... being a computer science professor was not on my
radar until | had a summer research opportunity.

How do | get started?

® It's never to early to talk to a professor in a research
area that interests you!

Undergraduates are often active participants in my lab, and | am currently
advising several undergraduate research projects.

® This can often lead to funding from the Undergraduate
Research Opportunities Program (UROP).

You can get a scholarship stipend to support a research project.

https://ugresearch.umn.edu/opportunities/urop

Final Thoughts

| had a lot of fun teaching this course, and | hope you had fun taking it too!

If you are interested in chatting about opportunities to get more experience with computer
graphics, virtual reality, and/or research, please feel free to reach out!

Final Thoughts

| had a lot of fun teaching this course, and | hope you had fun taking it too!

If you are interested in chatting about opportunities to get more experience with computer
graphics, virtual reality, and/or research, please feel free to reach out!

For those who are wondering about my video
game plans over winter break!

