

Sample-Based Graphics

Discrete samples are used to describe visual information

Pixels can be created by digitizing images, using a sample-based
"painting" program, etc.

O�en some aspect of the physical world is sampled for visualization

Example programs: Adobe Photoshop™, GIMP™ , Adobe A�erEffects™

Geometry-Based (Scalable Vector) Graphics

Geometrical model is created, along with various appearance
attributes, and is then sampled for visualization (rendering)

Examples of 2D apps: Adobe Illustrator™, Adobe Freehand™
(formerly by Macromedia), Corel CorelDRAW™

Examples of 3D apps: Autodesk’s AutoCAD™, Autodesk’s Maya™,
Autodesk’s 3D Studio Max™

For sample-based graphics, the original data is itself a sample
(like a digital photo) of the real world, so there’s no way to get
any finer resolution that the original sample when you zoom

in.

With geometry-based graphics, the computer has an
underlying geometric/mathematical representation of the
object, so you can zoom in and redraw from a closer view.

Don’t be confused — of course, any time you draw to a
screen you are in a sense "sampling" because you have to
get the picture to fit into pixels — the key with geometry-

based graphics is that the underlying geometric model
makes it possible to draw at any scale.

Lets do some sampling of a building

A color value is measured at every grid point and used to color corresponding grid square

This poor sampling and image reconstruction method creates a blocky image

10 = white, 5 = gray, 0 = black

Once image is defined in terms of colors at (x, y)
locations on the grid, you can change the image easily

by altering the location or color values.

For example, if we reverse our mapping and make
0 = white and 10 = black, the image would look like this.

Pixel information from one image can be copied and
pasted into another, replacing or combining them

with previously stored pixels.

WYSIAYG (What You See Is All You Get)

No additional information

no depth information

can’t examine scene from different point of view

at most can play with the individual pixels or groups of pixels to change colors, enhance contrast, find edges, etc.

Recently, there is strong interest in image-based rendering to fake 3D scenes and arbitrary camera positions. New images can
be constructed by interpolation, composition, warping and other operations. (Check out our courses on computer vision!)

Photo Tourism: Exploring Photo Collections in 3D (SIGGRAPH 2006)

Geometry-based graphics applications store mathematical
descriptions, or "models," of geometric elements (lines,
polygons, polyhedrons…) and associated attributes (e.g.,
color, material properties).

Elements are primitive geometric shapes, primitives for
short

Images created as pixel arrays (via sampling of geometry) for
viewing, but not stored as part of model. Images of many
different views are generated from same model.

Users cannot usually work directly with individual pixels in
geometry-based programs; as user manipulates geometric
elements, program resamples and redisplays elements

Rendering o�en combines geometric and sample-based graphics, both as a performance hack and to
increase the quality of the final product (e.g., we will combine "image textures" with 3D geometries).

3D model

(geometry-based graphics)
image texture

(sample-based graphics)

steve dabbing

(combined)

+ =

Vector Drawing

calligraphic, stroke, random-scan displays or plotters

Raster Drawing

monitors, TVs, smartphones, laser printers, etc.

For horizontal, vertical and diagonal lines
where all pixels lie on ideal line: special case

For lines at an arbitrary angle, select pixels
closest to the ideal line (Bresenham’s
midpoint "scan conversion" algorithm)

Sampling continuous line on discrete grid
introduces sampling errors: "jaggies"

Find intersection of scanline with
polygon edges

1.

Sort intersections by increasing x2.

Fill the polygon between pairs of
intersections (spans)

3.

First approach used a bitmap or "texture" in computer graphics lingo

This has all the usual limitations in scaling that one would expect

Outline fonts: defined in terms of mathematical drawing primitives (lines, arcs, splines) and
thus scalable, but more CPU intensive (e.g. Adobe PostScript™, Microso� TrueType™)

Font design (typography is highly skilled specialty, involving graphical and algorithmic design)

In computer graphics, we use a three-component additive color model (RGB).

RGBA colors also include an alpha channel for transparency.

In screen coordinates, the
upper le� corner is (0,0)!

Graphics programs may be run with different
screen resolutions and window sizes.

We therefore need a screen independent
coordinate system.

This is the 2D coordinate system you will be using
in the programming assignment.

Note that mouse events are reported in screen
coordinates, so they will need to be converted! (-1, -1)

(1, 1)(-1, 1)

(1, -1)

(0, 0)

A point is a location in space (2D, 3D, etc.)
It can be specified by a tuple of numbers, relative to a coordinate system.

Points identify a position in space,
but what else can they do?

It doesn't really make sense to add
or multiply points.

 Murphy + Coffman = ?

 1.4 x Coffman = ?

... but maybe you can subtract them?

(2,0) - (5,0) = (-3,0)

The difference between (2,0) and (5,0) is the direction and
distance to travel to get to (2,0) from the starting point of (5,0).

point point vector

Murphy - Coffman =

direction and distance to travel
from Coffman to Murphy

Coffman

Murphy

Let v = (Murphy - Coffman)

Coffman + v = Murphy

Murphy + v = Rapson
Coffman

Murphy

Rapson

Vectors have length and direction,
but no fixed position.

Can be added, subtracted, and scaled.

v

Given a coordinate system, we can
express a vector as a list of numbers.

A vector can be seen as:

an offset from the origin

a little arrow

These are all the same vector.

A vector has a length, denoted ||v||

Multiplying a vector v by a scalar
(real number) c gives a new vector,

cv = (cv1, cv2, …, cvd)

Note that cv has either the same
or the opposite direction as v.

A vector v is a unit vector if
||v|| = 1.

Normalizing a vector means finding
a unit vector strictly parallel to it.
How might you do this?

To add two vectors v and w:

v + w = (v1+w1, v2+w2, …)

Geometrically, this puts one vector
a�er the other.

To add two vectors v and w:

v + w = (v1+w1, v2+w2, …)

Geometrically, this puts one vector
a�er the other.

How would you define vector
subtraction?

To add two vectors v and w:

v + w = (v1+w1, v2+w2, …)

Geometrically, this puts one vector
a�er the other.

How would you define vector
subtraction?

https://github.com/CSCI-4611-Fall-2022/Assignment-2
https://github.com/CSCI-4611-Fall-2022/Assignment-2
https://github.com/CSCI-4611-Fall-2022/Assignment-2
https://github.com/CSCI-4611-Fall-2022/Assignment-2
https://github.com/CSCI-4611-Fall-2022/Assignment-2
https://github.com/CSCI-4611-Fall-2022/Assignment-2

