

(2,0) - (5,0) = (-3,0)

The difference between (2,0) and (5,0) is the direction and
distance to travel to get to (2,0) from the starting point of (5,0).

point point vector

A vector has a length, denoted ||v||

const v = new gfx.Vector2(5, 1);

console.log(v.length());

>> 5.0990195135927845

A vector v is a unit vector if
||v|| = 1.

Normalizing creates a unit vector by
dividing every component by the length.

const v = new gfx.Vector2(5, 1);

v.normalize();

const v1 = new gfx.Vector2(1, 5);

const v2 = new gfx.Vector2(1, 4);

const sum = v1 + v2;

>> TS2365: Operator '+' cannot be applied to types...

const v1 = new gfx.Vector2(1, 5);

const v2 = new gfx.Vector2(1, 4);

// This creates a new vector to hold the sum

const sum = gfx.Vector2.add(v1, v2);

// This changes the value of v1 to the sum

v1.add(v2);

const v1 = new gfx.Vector2(1, 5);

const v2 = new gfx.Vector2(1, 4);

// This creates a new vector to hold the difference

const sum = gfx.Vector2.subtract(v1, v2);

// This changes the value of v1 to the difference

v1.subtract(v2);

ship.rotation += Math.PI / 2;

ship.position.add(new Vector2(0, 1));

ship.rotation += Math.PI / 2;

ship.translate(new Vector2(0, 1));

ship.rotation += Math.PI / 2;

ship.position.add(new Vector2(0, 1));

ship.rotation += Math.PI / 2;

ship.translate(new Vector2(0, 1));

ship.rotation += Math.PI / 2;

ship.position.add(new Vector2(0, 1));

ship.rotation += Math.PI / 2;

ship.translate(new Vector2(0, 1));

ship.rotation += Math.PI / 2;

ship.position.add(new Vector2(0, 1));

ship.rotation += Math.PI / 2;

ship.translate(new Vector2(0, 1));

ship.rotation += Math.PI / 2;

ship.position.add(new Vector2(0, 1));

ship.rotation += Math.PI / 2;

ship.translate(new Vector2(0, 1));

ship.rotation += Math.PI / 2;

ship.position.add(new Vector2(0, 1));

ship.rotation += Math.PI / 2;

ship.translate(new Vector2(0, 1));

Movement is independent of object's
rotation!

Movement is relative to object's rotation!

ship.translate(new Vector2(0,1));

ship.translate(new Vector2(0,1));

// The translate method moves the object in a direction relative to its current orientation

translate(translation: Vector2): void

{

}

ship.translate(new Vector2(0,1));

// The translate method moves the object in a direction relative to its current orientation

translate(translation: Vector2): void

{

 // Rotate the translation vector by the object's current rotation

 const localVector = Vector2.rotate(translation, this.rotation);

 // Add the rotated vector to the object's current position

 this.position.add(localVector);

}

Multiplying a vector v by a scalar
(real number) c gives a new vector,

cv = (cv1, cv2, …, cvd)

Note that cv has either the same
or the opposite direction as v.

const v = new gfx.Vector2(1, 5);

// This creates a new vector to hold the result

const vResult = gfx.Vector2.multiplyScalar(3);

// This changes the value of v to the result

v.multiplyScalar(3);

A linear combination of vectors is
a sum of their scalar multiples.

c1v + c2w + ...

a = 1.5v + 0.6w

Recall that given a coordinate system, we
can express a vector as a list of numbers.

These numbers are
the coefficients of a
linear combination of
the basis vectors.

x^ = (1, 0)

y^ = (0, 1)
v = 5x^ + 1y^

Two vectors form an orthogonal basis if:

1. They are both unit vectors, and

2. They are orthogonal, i.e. perpendicular.

The advantage of working with an orthogonal
basis is that lengths of vectors, expressed in
the bases, are easy to calculate.

For two vectors v and w, their dot product is a scalar, defined as:

v · w = v1w1 + v2w2 + ⋯ + vdwd

Useful fact:

v · w = ||v|| ||w|| cos(θ)

where θ is the angle between the vectors v and w

What do we know if v · w = 0?

The operator inside tank A has a 60° field of view out the window.
(i.e. 30° on either side)

Can they see the other tanks located at points B, C, D, and E?

a · b = ||a|| ||b|| cos θ

If both a and b are unit vectors, then a · b gives
the cosine of the angle between them.

It is o�en useful to calculate the angle between
two vectors. How would you do this?

a · b = ||a|| ||b|| cos θ

If both a and b are unit vectors, then a · b gives
the cosine of the angle between them.

It is o�en useful to calculate the angle between
two vectors. How would you do this?

θ = acos(||a|| ||b||)

const A = new gfx.Vector2(3, 5);

const B = new gfx.Vector2(7, 3);

// Create a vector for the x axis

const X = new gfx.Vector2(1, 0);

// One way to compute the angle theta

const theta1 = X.angleBetween(A);

const theta2 = X.angleBetween(B);

const theta = theta1 - theta2;

// Another way to compute the angle theta

const theta = gfx.Vector2.angleBetween(A,

B);

const A = new gfx.Vector2(3, 5);

const B = new gfx.Vector2(7, 3);

console.log(gfx.Vector2.angleBetween(A, B));

>> 0.6254850402392292

console.log(gfx.Vector2.angleBetween(B, A));

>> 0.6254850402392292

θ = acos(||a|| ||b||)

This returns an angle between 0 and π.

const A = new gfx.Vector2(3, 5);

const B = new gfx.Vector2(7, 3);

console.log(gfx.Vector2.angleBetweenSigned(A,

B));

>> -0.6254850402392292

console.log(gfx.Vector2.angleBetweenSigned(B,

A));

>> 0.6254850402392292

θ = atan2(||b||.y, ||b||.x) - atan2(||a||.y, ||a||.x)

This returns an angle between - π and π.

ship.lookAt(this.mousePosition);

ship.lookAt(this.mousePosition);

// The lookAt method rotates the object to point towards a target position.

// The second optional parameter specifies the local axis that should point at the target.

// By default, this is the object's y-axis

lookAt(target: Vector2, lookVector = Vector2.UP): void

{

}

ship.lookAt(this.mousePosition);

// The lookAt method rotates the object to point towards a target position.

// The second optional parameter specifies the local axis that should point at the target.

// By default, this is the object's y-axis

lookAt(target: Vector2, lookVector = Vector2.UP): void

{

 // Compute the vector from the object's position to the target

 const targetVector = Vector2.subtract(target, this.position);

}

ship.lookAt(this.mousePosition);

// The lookAt method rotates the object to point towards a target position.

// The second optional parameter specifies the local axis that should point at the target.

// By default, this is the object's y-axis

lookAt(target: Vector2, lookVector = Vector2.UP): void

{

 // Compute the vector from the object's position to the target

 const targetVector = Vector2.subtract(target, this.position);

 // Compute the signed angle between the look vector and target vector

 // and use it to set the object's current rotation

 if(targetVector.length() > 0)

 this.rotation = lookVector.angleBetweenSigned(targetVector);

}

a · b = ||a|| ||b|| cos θ

If only b is a unit vector, then a · b gives the length
of the projection of a in the direction of b.

This is known as the scalar projection of a onto b.
How much

does a point in
the direction of b?

In 3D, the cross product of v and w is another vector, defined as:

length of v x w = area of parallelogram created by the two vectors
direction of v x w = orthogonal to the two vectors

Does the light L hit the inside or the outside of the object?

In computer graphics, it is a very common operation to test
whether two objects are intersecting (collision detection).

For complex objects, comparing all the triangles that make
up the objects is much too computationally expensive.

Most real-time applications and games use simplified
bounding areas/volumes for intersection tests.

Refer to Chapter 22 of your textbook for more details.

Image Credit: https://levelup.gitconnected.com/2d-collision-detection-8e50b6b8b5c0, https://developer.mozilla.org/en-US/docs/Games/Techniques/3D_collision_detection

computed from corners of
object's bounding box

computed based on most distant
vertex from the center

smaller radius may be possible by
moving the circle's center

computed from corners of
object's bounding box

computed based on most distant
vertex from the center

smaller radius may be possible by
moving the circle's center

 GopherGfx automatically computes the bounding circle/sphere using this approach.

Case 3: IntersectingCase 2: TouchingCase 1: Far Away

What can you tell me about the distance (d) in these three cases?

Case 3: IntersectingCase 2: TouchingCase 1: Far Away

What can you tell me about the distance (d) in these three cases?

d > (rcar + rball)

Case 3: IntersectingCase 2: TouchingCase 1: Far Away

What can you tell me about the distance (d) in these three cases?

d > (rcar + rball) d == (rcar + rball)

Case 3: IntersectingCase 2: TouchingCase 1: Far Away

What can you tell me about the distance (d) in these three cases?

d > (rcar + rball) d == (rcar + rball) d < (rcar + rball)

Axis-aligned bounding boxes are another efficient method
when a circle/sphere provides a poor approximation.

Objects are encapsulated within non-rotated boxes. The
axis-aligned constraint exists for performance reasons.

Note that the AABB dimensions may change when objects
are rotated relative to the world axes.

Image Credit: http://myselph.de/gamePhysics/collisionDetection.html, https://developer.mozilla.org/en-US/docs/Games/Techniques/3D_collision_detection

Image Credit: https://www.amanotes.com/post/using-swept-aabb-to-detect-and-process-collision

Oriented Bounding Box (OBB) Discrete Oriented Polytope (k-DOP) Convex Hull

Image Credit: https://www.researchgate.net/figure/Bounding-volumes-sphere-axis-aligned-bounding-box-AABB-oriented-bounding-box_fig9_272093426

