M UNIVERSITY OF MINNESOTA

Driven to Discover®

Essential Graphics Math

CSCl 4611: Programming Interactive Computer Graphics and Games

Evan Suma Rosenberg | CSCI4611 | Fall2022

This course content is offered under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International license.

Review: Vectors

(230) B (5)0) - ('3)0)

point point vector

The difference between (2,0) and (5,0) is the direction and
distance to travel to get to (2,0) from the starting point of (5,0).

Vector Length (Magnitude)

A vector has a length, denoted ||v||

VIl =/ +vs+-+vg

const v = new gfx.Vector2(5, 1);
console.log(v.length());

>> 5.0990195135927845

.....................

...................

...................

———————————————————

""""""""

Vector Normalization

A vector v is a unit vector if
[|v|| = 1.

Normalizing creates a unit vector by

dividing every component by the length.

const v = new gfx.Vector2(5, 1);
v.normalize();

k = = = = = e = m om om o= om = o= o=

Vector Addition

new gfx.Vector2(1, 5);

const vl

const v2 new gfx.Vector2(1, 4);
const sum = vl + v2;

>> TS2365: Operator '+' cannot be applied to types...

Vector Addition

const vl = new gfx.Vector2(1l, 5);

const v2 new gfx.Vector2(1, 4);

// Thls creates a new vector to hold the sum
const sum = gfx.Vector2.add(vl, v2);

// This changes the value of vl to the sum
vl.add(v2);

Vector Subtraction

const vl = new gfx.Vector2(1, 5);
const v2 new gfx.Vector2(1, 4);

// Thls creates a new vector to hold the difference
const sum = gfx.Vector2.subtract(vl, v2);

// This changes the value of vl to the difference
vl.subtract(v2);

Vector Addition/Subtraction vs. translate()

3 2

ship.rotation += Math.PI / 2; ship.rotation += Math.PI / 2;
ship.position.add(new Vector2(0, 1)); ship.translate(new Vector2(0, 1));

Vector Addition/Subtraction vs. translate()

z)

ship.rotation += Math.PI / 2; ship.rotation += Math.PI / 2;
ship.position.add(new Vector2(0, 1)); ship.translate(new Vector2(0, 1));

Vector Addition/Subtraction vs. translate()

z
)

ship.rotation += Math.PI / 2; ship.rotation += Math.PI / 2;
ship.position.add(new Vector2(0, 1)); ship.translate(new Vector2(0, 1));

Vector Addition/Subtraction vs. translate()

%
%

ship.rotation += Math.PI / 2; ship.rotation += Math.PI / 2;
ship.position.add(new Vector2(0, 1)); ship.translate(new Vector2(0, 1));

Vector Addition/Subtraction vs. translate()

%
T—

ship.rotation += Math.PI / 2; ship.rotation += Math.PI / 2;
ship.position.add(new Vector2(0, 1)); ship.translate(new Vector2(0, 1));

Vector Addition/Subtraction vs. translate()

Movement is independent of object's Movement is relative to object's rotation!
rotation!
I
l —
ship.rotation += Math.PI / 2; ship.rotation += Math.PI / 2;

ship.position.add(new Vector2(0, 1)); ship.translate(new Vector2(0, 1));

What does the translate() function do?

ship.translate(new Vector2(0,1)),

What does the translate() function do?

ship.translate(new Vector2(0,1)),

// The translate method moves the object in a direction relative to its current orientation
translate(translation: Vector2): void

{

What does the translate() function do?

ship.translate(new Vector2(0,1)),

// The translate method moves the object in a direction relative to its current orientation
translate(translation: Vector2): void
{

// Rotate the translation vector by the object's current rotation

const localVector = Vector2.rotate(translation, this.rotation);

// Add the rotated vector to the object's current position
this.position.add(localVector);

Vector Scalar Multiplication

Multiplying a vector v by a scalar
(real number) ¢ gives a new vector,

cv=(cvy, Cvy, ..., CVy)

Note that cv has either the same
or the opposite direction as v. TV

Vector Scalar Multiplication

const v = new gfx.Vector2(1, 5);

// Thls creates a new vector to hold the result
const vResult = gfx.Vector2.multiplyScalar(3);

// This changes the value of v to the result
v.multiplyScalar(3);

Linear Combinations

..............................

..............................

A linear combination of vectors is
a sum of their scalar multiples.

civ+coow+...

a=15v+0.6w

Coordinates

Recall that given a coordinate system, we
can express a vector as a list of numbers.

These numbers are

(35
the coefficients of a
v — v2 linear combination of
the basis vectors.
Ud x"=(1,0)
y"=(0,1)

..............................

..................................

...............................

S e B ol e A el B |

Orthogonal Bases

Two vectors form an orthogonal basis if:

1. They are both unit vectors, and

..................................

2. They are orthogonal, i.e. perpendicular.

................................

The advantage of working with an orthogonal Ty TTTITTT I
basis is that lengths of vectors, expressed in | S A
the bases, are easy to calculate. >

Dot Products

For two vectors v and w, their dot product is a scalar, defined as:

d
V' W=ViW7+VoWy+ -+ VgWy VW = E Vi Wi
=1

Dot Products

Useful fact:

v-w-=||v||||lwl|| cos(0)

where 0 is the angle between the vectors vand w

What do we know if v-w=0?

v-w >0 vew =0 veow < 0

The operator inside tank A has a 60° field of view out the window.
(i.e. 30° on either side)

@Y

Can they see the other tanks located at points B, C, D, and E?

Angle Between Two Vectors

a-b=|all||b|| cosB

If both @ and b are unit vectors, then a - b gives
the cosine of the angle between them.

It is often useful to calculate the angle between
two vectors. How would you do this?

Angle Between Two Vectors

a-b=|all||b|| cosB

If both @ and b are unit vectors, then a - b gives
the cosine of the angle between them.

It is often useful to calculate the angle between
two vectors. How would you do this?

0 =acos(||a|| ||b]|)

Angle Between Two Vectors

const A = new gfx.Vector2(3, 5);
const B = new gfx.Vector2(7, 3);

// Create a vector for the x axis
const X = new gfx.Vector2(1, 0);

// One way to compute the angle theta
const thetal = X.angleBetween(A);
const theta2 = X.angleBetween(B);
const theta = thetal - theta2;

// Another way to compute the angle theta

const theta = gfx.Vector2.angleBetween(A,
B);

Signed Angle Between Two Vectors?

0 =acos(||al|||b]|)

This returns an angle between 0 and .

const A
const B

new gfx.Vector2(3, 5),
new gfx.Vector2(7, 3);

console.log(gfx.Vector2.angleBetween(A, B));
>> 0.6254850402392292

console.log(gfx.Vector2.angleBetween(B, A));
>> 0.6254850402392292

Signed Angle Between Two Vectors (2D)

0=atan2(||b||.y, ||b||.x) - atan2(|al|.y, ||a]|.x)

Thisreturns an angle between - and .

const A
const B

new gfx.Vector2(3, 5),
new gfx.Vector2(7, 3);

console.log(gfx.Vector2.angleBetweenSigned(A,

B));
>> -0.6254850402392292

console.log(gfx.Vector2.angleBetweenSigned(B,

A));
>> 0.6254850402392292

What does the lookAt() function do?

ship.lookAt(this.mousePosition);

What does the lookAt() function do?

ship.lookAt(this.mousePosition);

// The lookAt method rotates the object to point towards a target position.

// The second optional parameter specifies the local axis that should point at the target.
// By default, this is the object's y-axis

lookAt(target: Vector2, lookVector = Vector2.UP): void

{

What does the lookAt() function do?

ship.lookAt(this.mousePosition);

// The lookAt method rotates the object to point towards a target position.
// The second optional parameter specifies the local axis that should point at the target.
// By default, this is the object's y-axis
lookAt(target: Vector2, lookVector = Vector2.UP): void
{
// Compute the vector from the object's position to the target
const targetVector = Vector2.subtract(target, this.position);

What does the lookAt() function do?

ship.lookAt(this.mousePosition);

// The lookAt method rotates the object to point towards a target position.
// The second optional parameter specifies the local axis that should point at the target.
// By default, this i1is the object's y-axis
lookAt(target: Vector2, lookVector = Vector2.UP): void
{
// Compute the vector from the object's position to the target
const targetVector = Vector2.subtract(target, this.position);

// Compute the signed angle between the look vector and target vector
// and use it to set the object's current rotation
if(targetVector.length() > 0)

this.rotation = lookVector.angleBetweenSigned(targetVector);

Scalar Projection

a-b=|al||b]| cos 8

If only b is a unit vector, then a - b gives the length
of the projection of a in the direction of b.

This is known as the scalar projection of a onto b.

A cos6

How much
does a pointin
the direction of b?

Cross Product (3D Only!)

In 3D, the cross product of v and w is another vector, defined as:

[VoW3 — V3W9 |
v X w = |v3w] — viws

V1w — V2w

length of v x w = area of parallelogram created by the two vectors
direction of v x w = orthogonal to the two vectors

normal
vector na

NnBs

Does the light L hit the inside or the outside of the object?

Review

Is the result a point, a vector, or a scalar?
(P and Q are points, vand w are vectors, all in 3D.)

P+v=7?
v+w=7?
P+Q=?
V-w=7?

vxw=7?

Intersection Tests

® In computer graphics, itis avery common operation to test
whether two objects are intersecting (collision detection).

® Forcomplex objects, comparing all the triangles that make
up the objects is much too computationally expensive.

® Most real-time applications and games use simplified
bounding areas/volumes for intersection tests.

Refer to Chapter 22 of your textbook for more details.

Image Credit: https://levelup.gitconnected.com/2d-collision-detection-8e50b6b8b5c0, https://developer.mozilla.org/en-US/docs/Games/Techniques/3D_collision_detection

Bounding Circle / Sphere

computed from corners of computed based on most distant smaller radius may be possible by
object's bounding box vertex from the center moving the circle's center

Bounding Circle / Sphere

computed from corners of computed based on most distant smaller radius may be possible by
object's bounding box vertex from the center moving the circle's center

1

GopherGfx automatically computes the bounding circle/sphere using this approach.

Circle/Sphere Intersections

Circle/Sphere Intersections

What can you tell me about the distance (d) in these three cases?

Case 1: Far Away Case 2: Touching Case 3: Intersecting

Circle/Sphere Intersections

What can you tell me about the distance (d) in these three cases?

Case 1: Far Away Case 2: Touching Case 3: Intersecting

1
® 1
Pcar N

[4
~.--‘

d > (rear + fpatl)

Circle/Sphere Intersections

What can you tell me about the distance (d) in these three cases?

Case 1: Far Away Case 2: Touching Case 3: Intersecting

’
1 (] 1
® 1 1 ® 1

' \ '
Pcar ' \ Pcar '
‘. 4 ‘ 4

¥4 Y4
.. ” AN .’

>

d > (rear + fpatl) d == (rcar * "ball)

Circle/Sphere Intersections

What can you tell me about the distance (d) in these three cases?

Case 1: Far Away Case 2: Touching Case 3: Intersecting

’

1 1 1 1

® . 1 () 1 ® 1
[] [] []

Pcar ' " Pcar ' Pcar y

A ’) § 4 ‘+ 4
4 Y 4 4
\~ , \~ , \~ ,

L' 4 L 4 L 4
~'.--‘ ~.--‘ ~'.--‘

d > (rear + fpatl) d == (rcar * 'pall d <(rear+ rpat)

Axis-Aligned Bounding Box (AABB)

AABB,

AABB,
e Axis-aligned bounding boxes are another efficient method o
oo
when a circle/sphere provides a poor approximation.

® Objects are encapsulated within non-rotated boxes. The e AABB,

axis-aligned constraint exists for performance reasons.

e Notethatthe AABB dimensions may change when objects
are rotated relative to the world axes.

Image Credit: http://myselph.de/gamePhysics/collisionDetection.html, https://developer.mozilla.org/en-US/docs/Games/Techniques/3D_collision_detection

‘ AABB Intersections

_____________ t u_p N M bottom

=

Image Credit: https://www.amanotes.com/post/using-swept-aabb-to-detect-and-process-collision

More Complex Bounding Volumes

Oriented Bounding Box (OBB) Discrete Oriented Polytope (k-DOP) Convex Hull

Summary

BETTER BOUND, BETTER CULLING

FASTER TEST, LESS MEMORY

SPHERE AABB OBB 8-DOP CONVEX HULL

Image Credit: https://www.researchgate.net/figure/Bounding-volumes-sphere-axis-aligned-bounding-box-AABB-oriented-bounding-box_figd_272093426

