

Object and scene construction
- Hierarchical representation of spatial relationship between components

- Leaf nodes of the scene graph contain primitives

Virtual camera

3D tracking for motion capture, animation, virtual reality, etc.

And more...

Let's go shopping!

Need 6 apples, 5 cans of soup, 1 box of tissues, and 2 bags of chips

Stores A, B, and C (Super Target, Trader Joe’s and Whole Foods) have following unit prices

Shorthand representation of the situation
(assuming we can remember order of items and corresponding prices)

Column vector for quantities, q:

Row vectors for prices at stores:

We can express these sums more compactly using a matrix:

We can express these sums more compactly using a matrix:

Determine totalCost vector by row-column multiplication:
The dot product is the sum of the pairwise multiplications. Apply this operation to rows of prices and column of quantities.

Each element is the dot product of a row of M with a column of N.

Each element is the dot product of a row of M with a column of N.

Matrix multiplication
is not commutative!

Translation

Rotation

Scaling

Shearing

Translation is the component-wise addition of vectors
 v' = v + t where

and x' = x + dx
 y' = y + dy

Operation is isometric (preserves lengths)

Scaling is the component-wise multiplication of vectors

 v' = Sv where

and

Does not preserve lengths
Does not preserve angles
(unless scaling is uniform)

The scaling (Sx, Sy) = (-1, 2) is applied to a collection of points.

Each point is both reflected about the y-axis and scaled by 2 in the y-direction.

Rotation of Ө about the origin

 v' = RӨ where

and x' = x cosӨ - y sinӨ

 y' = x sinӨ - y cosӨ

A rotation of zero (no rotation) is
results in the identity matrix.

Translation

Scaling

Rotation about X-axis

Rotation about Y-axis

Rotation about Z-axis

One way to build a rotation in 3D is by composing three elementary rotation transformations:

 an x-rotation(pitch),

 followed by a y-rotation (yaw or head),

 and then a z-rotation (roll).

The overall rotation is given by:

 M = Rz(β3)Ry(β2)Rx(β1)

In this context the angles β1, β2, and β3 are o�en called Euler angles.

One way to build a rotation in 3D is by composing three elementary rotation transformations: an x-roll followed
by a y-roll, and then a z-roll. The overall rotation is given by:

 M = Rz(β3)Ry(β2)Rx(β1)

In this context the angles β1, β2, and β3 are o�en called Euler angles.

3D rotation matrices are not commutative!!!!

If you want to describe this rotation to me...

I need to know B1, B2, B3

AND, I need to know the order of rotation

That's a lot of work for just one rotation. Surely there must be a better way?

Rotation representation:
note: some notations use w instead of s.

Relation to axis-angle
representation (u,θ):

Represent point p as a quaternion:1.

Compute rotated quaternion point representation qp'2.

Extract standard coordinate representation p' from qp'3.

Magnitude:

Inverse:

Quaternions can be composed through multiplication:

For rotations we assume unit quaternions, hence:

Quaternion multiplication
is not commutative!

Intermediate rotations can be computed using spherical linear interpolation.

This can be used to generate smooth transitions between two rotations (e.g., animation).

class Transform3

{

 public children: Array<Transform3>;

 public position: Vector3;

 public rotation: Quaternion;

 public scale: Vector3;

}

https://github.com/CSCI-4611-Fall-2022/Assignment-2
https://github.com/CSCI-4611-Fall-2022/Assignment-2
https://github.com/CSCI-4611-Fall-2022/Assignment-2
https://github.com/CSCI-4611-Fall-2022/Assignment-2
https://github.com/CSCI-4611-Fall-2022/Assignment-2

Everything has a position p and a velocity v.

A�er some time Δt has passed since last frame:

Find all the forces, calculate acceleration a = F/m

vnew = vold + a Δt

pnew = pold + vnew Δt

Handle collisions

In games, we o�en just
approximate acceleration

using a constant instead of
precisely modeling F / m.

Case 3: IntersectingCase 2: TouchingCase 1: Far Away

What can you tell me about the distance (d) in these three cases?

Case 3: IntersectingCase 2: TouchingCase 1: Far Away

What can you tell me about the distance (d) in these three cases?

d > (rcar + rball)

Case 3: IntersectingCase 2: TouchingCase 1: Far Away

What can you tell me about the distance (d) in these three cases?

d > (rcar + rball) d == (rcar + rball)

Case 3: IntersectingCase 2: TouchingCase 1: Far Away

What can you tell me about the distance (d) in these three cases?

d > (rcar + rball) d == (rcar + rball) d < (rcar + rball)

Computer simulations use discrete
timesteps, so a "collision" really means
the ball has penetrated the other object.

When we detect this, we simply move the
ball backwards along its velocity vector
until it no longer penetrates the object.

Then, we can figure out how it would
bounce off the object.

A ball hits the ground and bounces. What happens to its velocity?

(Assuming it bounces perfectly with no loss of speed.)

Given d, find r.

A ball hits an inclined plane and bounces. What happens to its velocity?

(Assuming it bounces perfectly with no loss of speed.)

Given d and n, find r.

A ball hits an inclined plane and bounces. What happens to its velocity?

(Assuming it bounces perfectly with no loss of speed.)

Given d and n, find r.

Hint: What is
the red vector?

A ball hits an inclined plane and bounces. What happens to its velocity?

(Assuming it bounces perfectly with no loss of speed.)

A ball hits an inclined plane and bounces. What happens to its velocity?

(Assuming it bounces perfectly with no loss of speed.)

A ball hits an inclined plane and bounces. What happens to its velocity?

(Assuming it bounces perfectly with no loss of speed.)

r = d − 2(d · n)n

