M UNIVERSITY OF MINNESOTA

Driven to Discover®

3D Transformations and Physical Simulation

CSCI 4611: Programming Interactive Computer Graphics and Games

Evan Suma Rosenberg | CSCI4611 | Fall2022

This course content is offered under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International license.

Geometric Transformations in Graphics

® Object and scene construction
- Hierarchical representation of spatial relationship between components

- Leaf nodes of the scene graph contain primitives

e Virtual camera

e 3D tracking for motion capture, animation, virtual reality, etc.

Car

Light
® And more... Wheels @ eody

Transformations

Wheelgeometry

Vector and Matrix Notation

Let's go shopping!
e Need 6 apples, 5 cans of soup, 1 box of tissues, and 2 bags of chips

e Stores A, B, and C (Super Target, Trader Joe’s and Whole Foods) have following unit prices

1 canof 1boxof 1bagof

1 apple soup tissues chips
Super Target $0.20 $0.93 $0.64 $1.20
Trader Joe's $0.65 $0.95 $0.75 $1.40

Whole Paycheck | $0.95 $1.10 $0.90 $3.50

Non-Geometric Example

Shorthand representation of the situation
(assuming we can remember order of items and corresponding prices)

Column vector for quantities, q:

6
5
1
2

store A (Target) A =1[0.20 0.93 0.64 1.20]
store B (Trader Joe’s) B =10.65 0.95 0.75 1.40]

Row vectors for prices at stores: " ' (Whole Paycheck) C =1[0.95 1.10 0.90 3.50]

What do | pay?

@)
I
o = Oy

A =10.20 0.93 0.64 1.20]
= [0.65 0.95 0.75 1.40]
C =1[0.95 1.10 0.90 3.50]

4

totalCost, = ElAiqi

(0.20 ¢ 6) + (0.93 ¢ 5) + (0.64 ¢ 1) + (1.20 ¢ 2)
(1.2 + 4.65 + 0.64 + 2.40)
8.89

4
totalCostg = 2 Biq;=3.9+4.75+ 0.75 + 2.8 =12.2
i=1

4
totalCost = 2 Cq;=57+55+09+7=19.1

Using Matrix Notation

We can express these sums more compactly using a matrix:

(totalCost ;| [0.20 093 0.64 1.20]
P(AIl) = |totalCost, 0.65 095 0.75 1.40
totalCost . 0.95 1.10 0.90 3.50

I I\J - (Jl

Using Matrix Notation

We can express these sums more compactly using a matrix:

61
(totalCost ;| [0.20 093 0.64 1.20] 5
P(All) = |totalCost, | =10.65 095 0.75 1.40 |
totalCost . 0.95 1.10 0.90 3.50)

Determine totalCost vector by row-column multiplication:

The dot product is the sum of the pairwise multiplications. Apply this operation to rows of prices and column of quantities.

[a b c d] =ax+by+cz+dw

B

Matrix Multiplication

Each elementis the dot product of a row of M with a column of N.

mxx mxy Xz n xx nxy XZ
M=(m, m, m, N=|n, n, n,
m, m, m, n, n, n,
L=MN
lxx XZ nxx n’xz
yx l)’f)’ yz - myx m)’y m)’z . nyx nyZ
le l zZ mZx mzy mZZ nzx ZZ
ly=m.n_ +mn +m.n,

Matrix Multiplication

Each elementis the dot product of a row of M with a column of N.

mxx mxy Xz nxx nxy XZ
M=(m, m, m, N=|n, n, n,
m, m, m, n, - ZZ
L=MN
lxx XZ nxx n’xz
— . Matrix multiplication
yX lyy lyz =\m, m, m, Pyx n, . .
Is not commutative!
lzx l ZZ mZx mzy mZZ nzx ZZ

ly=m.n_ +mn +m.n,

Elemental Transformations in Computer Graphics

e Translation
e Rotation
e Scaling

® Shearing

Translation (2D Example)

Translation is the component-wise addition of vectors

vi=v+it where

Y6 r
X x' dx —~+
v=| |, vi=| |, t= 5
y y dy . T
T
and x'=x+dx > |
y'=y+dy L]

Operation is isometric (preserves lengths)

Scaling (2D Example)

Scaling is the component-wise multiplication of vectors

X x'
v'=Sv where v = , V= '
Yy J

_S -
and S — * x X 5 4

Does not preserve lengths

Does not preserve angles e

(unless scaling is uniform) 1 2 3 4 5 6 7 8 9 10

Scaling as a Reflection

The scaling (Sx, Sy) = (-1, 2) is applied to a collection of points.
Each point is both reflected about the y-axis and scaled by 2 in the y-direction.

e & 9 Ay

* o

° ® * o o

® 4 o’ :
——e—a—s —r
L] . o ° X
] a :.:

. .

* o @

Rotation (2D Example)

Rotation of © about the origin

v'=Rg where
X x'

v=| [, Vi=| |
Y Y
cosO —sinB
|sin® cosB

and x'=xcosO -ysind

y'=Xsin© -y cosO

A rotation of zero (no rotation) is

results in the identity matrix.

[R

el

LN . .

3D Transformations

Left Hand vs. Right Hand Coordinate Systems

Up Vector Up Vector

]
j Fﬂmam vector Forward vector 'r”dE'” f‘nge i

- \E“\-___‘_ ‘Q‘ “Right”

Vector

Left Hand Coordinate System Right Hand Coordinate System

Basic 3D Transformations (Right Handed)

Translation

S = O O
-hEE
>

o o o =
o O = O

A
-

Scaling

o o o

o o~

o 2 o o

—_ o o o
[N

Basic 3D Transformations (Right Handed)

1 0 0 0]
0O cos6 -smn6 O
Rotation about X-axis 0 sin® cos® O
o 0 0 1
cosO 0 smn6 O]
. . 0 1 0 0
Rotation about Y-axis _sin® 0 cosd 0
0 0 0 1
KL
cosO —sinB 0 O]
)) ino 6 0 0
Rotation about Z-axis - o0%
0 0 1 O
0 0 0 1

+Y

X

Basic 3D Rotations

a). the barn b). -700 x-roll T‘\
c). 30° y-roll d). -90° z-roll

— —

Combining 3D Rotations

One way to build a rotation in 3D is by composing three elementary rotation transformations:

an x-rotation(pitch),

5
head
followed by a y-rotation (yaw or head), (b
and then a z-rotation (roll). pitch /"’ o? ol
oy
L" £ |
The overall rotation is given by: / H\
X > .
M =Rz(B3)Ry(B2)Rx(B1) \B © C/

In this context the angles 31, 32, and 33 are often called Euler angles.

Combining 3D Rotations

One way to build a rotation in 3D is by composing three elementary rotation transformations: an x-roll followed
by a y-roll, and then a z-roll. The overall rotation is given by:

M =Rz(B3)Ry(£2)Rx(B1) yT

In this context the angles 31, 32, and [33 are often called Euler angles. ©

pitch l .
3D rotation matrices are not commutative!!!! “"‘/ 74
L# 4 o U
If you want to describe this rotation to me... / ;:E>;
® | need to know B1, B2, B3 \B =

AND, | need to know the order of rotation

Rotation about an Arbitrary Axis

e Classic approach is to use Euler’s theorem
Euler’s theorem: Any sequence of rotations = one rotation about some axis.

® So, how to rotate around arbitrary axis u by angle B?

Use 2 rotations to align u with the X-axis.
Rotate around the X-axis (an X roll) by angle B.

Undo the original 2 rotations.

Rotation about an Arbitrary Axis

That's a lot of work for just one rotation. Surely there must be a better way?

Euler Angles

Euler angles may seem convenient
because they are human-readable.

But they are not the most efficient way to represent
arbitrary 3D rotations!

They suffer from a phenomenon known as Gimbal lock.

You cannot compute intermediate rotations or
smoothly interpolate (important for animation).

Working with them in computer graphics code is a pain!

Quaternions

¢ |[nvented in 1843 by Sir William Rowan Hamilton as
an extension to the complex numbers.

¢ Introduced to the field of computer graphics in
1985 by Ken Shoemake.

® Quaternions are awesome!
They can represent any 3D rotation using 4 real numbers.

They do not suffer from Gimbal lock.
You can smoothly interpolate between them.

Composing them requires fewer operations than rotation matrices.

Quaternions

Rotation representation:

note: some notations use w instead of s.

Relation to axis-angle
representation (u,0):

q=(s,v)=(s5,(v,,v,,v,))

S =CO0S—,

vV=sin—u

"<

Quaternion Rotation

1. Represent point p as a quaternion:
q, =(0,p)

2. Compute rotated quaternion point representation '

q,=99,9

3. Extract standard coordinate representation p' from qp"

q, =(0,p")

Quaternion Math

Quaternions can be composed through multiplication: Quaternion muttiplication

is not commutative!
q.9, = (5152 —V VL8V, T8,V TV X Vz)

Magnitude: \q\ = \/52 TV'v

Inverse: q = ‘1‘ (S —) P’
q

For rotations we assume unit quaternions, hence:

-1

q :(S,—V) when ‘q‘zl

Quaternion Interpolation

Intermediate rotations can be computed using spherical linear interpolation.
This can be used to generate smooth transitions between two rotations (e.g., animation).

q. d.
s qint

dint

o b dp
LERP SLERP

Inside the GopherGfx Transform3 Class

class Transform3

{

public children: Array<Transform3>;

public position: Vector3;
public rotation: Quaternion;
public scale: Vector3;

Overview of Assignment 2

https://github.com/CSCI-4611-Fall-2022/Assignment-2

https://github.com/CSCI-4611-Fall-2022/Assignment-2
https://github.com/CSCI-4611-Fall-2022/Assignment-2
https://github.com/CSCI-4611-Fall-2022/Assignment-2
https://github.com/CSCI-4611-Fall-2022/Assignment-2
https://github.com/CSCI-4611-Fall-2022/Assignment-2

Physical Simulation

Physics Simulation in a Nutshell

Everything has a position p and a velocity v.

After some time At has passed since last frame:
In games, we often just
. . approximate acceleration
e Find all the forces, calculate acceleration a=F/m PP !
using a constant instead of

3 precisely modeling F [m.
® Vpew =Vold T @At

® Phnew = Pold T Vhew At

Handle collisions

Review: Sphere Collisions

Review: Sphere Collisions

What can you tell me about the distance (d) in these three cases?

Case 1: Far Away Case 2: Touching Case 3: Intersecting

Review: Sphere Collisions

What can you tell me about the distance (d) in these three cases?

Case 1: Far Away Case 2: Touching Case 3: Intersecting

1
® 1
Pcar N

[4
~.--‘

d > (rear + fpatl)

Review: Sphere Collisions

What can you tell me about the distance (d) in these three cases?

Case 1: Far Away Case 2: Touching Case 3: Intersecting

’
1 (] 1
® 1 1 ® 1

' \ '
Pcar ' \ Pcar '
‘. 4 ‘ 4

¥4 Y4
.. ” AN .’

>

d > (rear + fpatl) d == (rcar * "ball)

Review: Sphere Collisions

What can you tell me about the distance (d) in these three cases?

Case 1: Far Away Case 2: Touching Case 3: Intersecting

’

1 1 1 1

® . 1 () 1 ® 1
[] [] []

Pcar ' " Pcar ' Pcar y

A ’) § 4 ‘+ 4
4 Y 4 4
\~ , \~ , \~ ,

L' 4 L 4 L 4
~'.--‘ ~.--‘ ~'.--‘

d > (rear + fpatl) d == (rcar * 'pall d <(rear+ rpat)

Collision Handling

Computer simulations use discrete
) reollision” 1 Timestep 1 Timestep 2 (Aﬂe-j-;';?gfgfmpm%m
timesteps, so a "collision” really means e P o =

the ball has penetrated the other object.
When we detect this, we simply move the e
ball backwards along its velocity vector

until it no longer penetrates the object.

Then, we can figure out how it would
bounce off the object.

Reflections and Collisions

A ball hits the ground and bounces. What happens to its velocity?

(Assuming it bounces perfectly with no loss of speed.)

Givend, findr.

Reflections and Collisions

A ball hits an inclined plane and bounces. What happens to its velocity?

(Assuming it bounces perfectly with no loss of speed.)

Givend and n, findr.

Reflections and Collisions

A ball hits an inclined plane and bounces. What happens to its velocity?

(Assuming it bounces perfectly with no loss of speed.)

Hint: What s
the red vector?

Givend and n, findr.

Reflections and Collisions

A ball hits an inclined plane and bounces. What happens to its velocity?

(Assuming it bounces perfectly with no loss of speed.)

Reflections and Collisions

A ball hits an inclined plane and bounces. What happens to its velocity?

(Assuming it bounces perfectly with no loss of speed.)

Reflections and Collisions

A ball hits an inclined plane and bounces. What happens to its velocity?

(Assuming it bounces perfectly with no loss of speed.)

1.

r —(d - n)n

~§
~
~§
~

~~ .
\~ .
“\

